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a b s t r a c t 

Medical image classification through learning-based approaches has been increasingly used, namely in 

the discrimination of melanoma. However, for skin lesion classification in general, such methods com- 

monly rely on dermoscopic or other 2D-macro RGB images. This work proposes to exploit beyond con- 

ventional 2D image characteristics, by considering a third dimension (depth) that characterises the skin 

surface rugosity, which can be obtained from light-field images, such as those available in the SKINL2 

dataset. To achieve this goal, a processing pipeline was deployed using a morlet scattering transform and 

a CNN model, allowing to perform a comparison between using 2D information, only 3D information, 

or both. Results show that discrimination between Melanoma and Nevus reaches an accuracy of 84.00, 

74.0 0 or 94.0 0% when using only 2D, only 3D, or both, respectively. An increase of 14.29pp in sensitivity 

and 8.33pp in specificity is achieved when expanding beyond conventional 2D information by also using 

depth. When discriminating between Melanoma and all other types of lesions (a further imbalanced set- 

ting), an increase of 28.57pp in sensitivity and decrease of 1.19pp in specificity is achieved for the same 

test conditions. Overall the results of this work demonstrate significant improvements over conventional 

approaches. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Over the last decades, skin cancer has maintained its posi- 

ion at the top of the most common cancers all over the world 

 Alliance, 2020 ). A skin lesion is any kind of skin patch that

resents different characteristics when compared to its surround- 

ng area. There are many types of skin lesions, which can be 

escribed according to their type, configuration, texture, colour, 

ocalisation, and distribution, among other clinical signs. Gener- 

lly, studies tend to focus on pigmented skin lesions, namely the 

elanocytic lesions. This type of lesions is primarily denoted as 

n abnormal proliferation of melanocytes at the basal epidermis 

r upper dermis layers that may ultimately be classified as benign 

r malignant ( Cichorek et al., 2013 ). Its classification is typically 

ased on dermatologists visual inspection, with support of dermo- 
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copic imaging and the diagnosis by skin biopsy ( Vestergaard et al., 

008 ). 

Around the world, dermatologic work force shortage and the 

ack of pathology lab facilities set up the main reasons for the 

ack of access to prompt detection of skin cancer, leading to 

he increased morbidity and melanoma mortality ( Feng et al., 

018 ). Melanoma diagnosis rates have increased dramatically 

ver the past three decades, outpacing almost all other cancers 

 Alliance, 2020 ). As of 2020, in the USA, the risk of developing

elanoma was of 1 in 38 ( 2 . 6% ) for Whites, 1 in 10 0 0 ( 0 . 1% ) for

lacks, and 1 in 167 ( 0 . 6% ) for Hispanics ( Society, 2020 ). A clas-

ical method to identify melanoma is with parameters known as 

symmetry, Border, Colour, and Diameter – coined the “ABCD” rule 

 Soyer et al., 2004 ). This method is based on the principle that 

elanoma lesions are typically asymmetric, are larger than 6mm 

n diameter, have irregular borders, and tend to have more than 

ne colour. Additionally, one-third of all melanomas are thought to 

rise from pre-existing nevus (a similar lesion but of benign ori- 

https://doi.org/10.1016/j.media.2021.102254
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102254&domain=pdf
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in) – thus detection and removal of such nevus is of utmost im- 

ortance in the prevention of melanoma ( Pampena et al., 2017 ). 

he process of lesion identification by specialists is labour inten- 

ive, time costly, and error prone, therefore, it could be improved 

ith the use automated methods. 

Fortunately, with the advent of Deep Learning (DL), 

omputer-aided diagnosis of cancers seems increasingly possi- 

le ( Litjens et al., 2017 ). Indeed, automated DL techniques for skin 

esion classification may automate future screening, and enable 

arly detection of skin cancer ( Adegun and Viriri, 2020 ). However, 

s detailed in Yao et al. (2021) , available skin lesion datasets 

re usually very small in comparison to what is normally used 

o train DL models. Therefore, many studies prefer to extract 

and-crafted features in order to reduce the model learning space 

nd, consequently, its natural capability to overfit ( Yang et al., 

018; Satheesha et al., 2017 ). Datasets used in skin lesion classi- 

cation use the same type of information as dermatology experts 

i.e. dermoscopic imagery (2D/colour). The resulting classifica- 

ion performances are yet to become sufficient to professionally 

elp dermatologists. Despite the limited composition of current 

atasets, other type of imagery could also be used for this end. 

his includes other data dimensions, which are fairly unexplored 

s they are not suited for direct human observation, but can still 

rovide relevant information for computer systems. One of these 

odalities is 3D imaging (e.g., stereo), which has already proven 

o enhance skin lesion discrimination performances due to the 

dded depth information ( McDonagh et al., 2008; Smith et al., 

011 ). 

In general, image classification requires the use of representa- 

ions that reduce non-informative intra-class variability, but must 

reserve discriminative information across classes. In DL, deep 

eural networks (DNN) build hierarchical invariant representations 

earned by applying linear and non-linear operators in succession 

uring training. These are learned in a dataset-dependent basis, 

nd most image classification problems have generic learnable rep- 

esentations that are common across fields. When multiple in- 

tances of the same element are present in a dataset, translations, 

otations, and scaling are common sources of variability for most 

mages. Changes in the object view point and perspective projec- 

ions of three dimensional surfaces correlate many of the dataset 

amples. With the use of Wavelet Scattering (WS) ( Bruna and Mal- 

at, 2013 ) it is possible to build neural networks invariant to said 

ranslations and rotations ( Sifre and Mallat, 2014 ). These can be 

mplemented as a convolutional neural network (CNN), with suc- 

essive spatial wavelet convolutions at each layer. 

This paper explores the use of depth data from skin lesions 

ombined with colour information by resorting to light-field im- 

gery and semi-automated segmentation masks. Based on a pub- 

icly available dataset named SKINL2 ( Faria et al., 2019a; 2019b ), 

 DL-based classifier is developed. The DL model relies on Mor- 

et Wavelet-based features that greatly reduce the dimensionality 

roblem, by performing Wavelet Scattering Transforms on the in- 

ut data ( Andén and Mallat, 2014; Bruna and Mallat, 2013; Sifre 

nd Mallat, 2013 ). These features are used as alternative to a 

eeper model by providing unique features, invariant to trans- 

ation, rotation, scale and frequency shifting – a transformation 

earing similarities to Gabor filters in initial CNN convolutions 

 Springenberg et al., 2015; Yosinski et al., 2015 ). The experimen- 

al results show the contribution of these new depth features in 

omparison to the classification of 2D colour images. Additionally, 

t is also assessed the extent to which depth information can im- 

rove current state-of-the-art (SotA) skin lesion classification sys- 

ems that only resort to the traditional 2D imagery. 

The main contribution of this paper is the exploitation of 3D 

urface skin data as an alternative data modality for melanoma 

iscrimination. Additionally, the Morlet Wavelet-based features are 
2 
lso introduced for this type of data and compared to the current 

tate-of-the-art results. Because this data is originated from light- 

eld imagery, a comparison to typical colour based classification is 

ossible, as the used dataset provides both colour image and 3D 

nformation for every image-pixel data. 

The remainder of the paper is organised as follows: 

ection 2 presents a brief literature review on relevant topics, 

ncluding previous works that led to the proposed pipeline, as 

ell as details about existing datasets, and the concept of wavelet 

cattering. Section 3 describes the proposed approach pipeline, in- 

luding relevant details about the experiment parameters, segmen- 

ation, data pre-processing, augmentation, normalisation, model 

eature extraction, and the DL model. Finally, Section 4 presents 

nd discusses the achieved results while Section 5 highlights the 

onclusions. 

. Background 

Image recognition and classification using Machine Learning 

ML) has become a major topic in a wide range of research fields, 

pecially with DL. For instance, in the field of skin lesion clas- 

ification, CNNs have produced promising results ( Gonzalez-Diaz, 

018; Tang et al., 2020 ). But recently, research based on data- 

riven models have reported the highest performance measure- 

ents ever published across multiple test datasets ( Hosny et al., 

019 ). The use of these pre-trained models is typically accompa- 

ied by a Transfer Learning (TL) method ( Shin et al., 2016; Barata 

t al., 2018 ), which can be additionally aided by manually extracted 

eatures (e.g., as in Hagerty et al. (2019) ). 

In order to properly address various concepts or areas necessary 

o support this work, the remainder of this section is structured 

nto four subsections, namely: Deep Learning (DL), segmentation, 

atasets, and Wavelet Scattering (WS). 

.1. Deep learning 

Practical implementation of automatic skin cancer classification 

as significantly improved with deep CNN-based models – DCNN 

( Gessert et al., 2019; Xie et al., 2020; Yuan et al., 2017; Esteva 

t al., 2017; Liu et al., 2020 ). However, despite the promising re- 

earch progresses, further improvement in diagnostic accuracy is 

till hindered by several factors. In particular, skin lesion dataset 

mages usually exhibit low contrast, fuzzy borders and artefacts 

uch as hair, veins, and ruler marks, which hinder lesion classifica- 

ion. As a consequence, large sets of images are necessary for ad- 

quately training DCNN models to fit the unknown data features, 

s exemplified by the use of millions of images in the most used 

mage classification datasets, ImageNet ( Deng et al., 2009 ). Bene- 

ting from an initial training with this large-scale image classifica- 

ion dataset, previous DCNN models have achieved significant clas- 

ification results, comparable to those of professional dermatolo- 

ists diagnostics ( Esteva et al., 2017; Liu et al., 2020 ). Additionally, 

lmost all the publicly accessible skin lesion datasets suffer from 

ata imbalance. Samples among different lesion categories have 

neven distributions because different types of skin lesions have 

ifferent occurring rates and image acquisition accessibility. Fur- 

hermore, many images have high intra- or low inter-class varia- 

ions ( Yu et al., 2016; Yang et al., 2019 ). These constrains contribute 

o an imbalanced dataset and poor metric performance, especially 

or rare (e.g., melanoma) and similar (e.g., melanoma and nevus) 

esion types. 

On large-scale image classification tasks, improving the DCNN 

tructure from an initial AlexNet ( Krizhevsky et al., 2012 ) to the 

ecent RegNet ( Radosavovic et al., 2020 ) or increasing the model 

arameter capacity ( Radosavovic et al., 2020; Tan and Le, 2019; He 

t al., 2016 ) enables better performances. However, in small-scale 
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mage datasets it is very difficult to increase the performance, as 

ncreasing the number of parameters may induce the model to 

ransition from an under-fitting space to space where the over- 

tting probability is hi ( Belkin et al., 2018 ). In some works de-

cribed in the literature, DCNNs are selected without taking into 

ccount the new dataset size and the new intra- or inter-class vari- 

tions – avoiding such issues by using mechanisms that mitigate 

he over-fitting problem ( Esteva et al., 2017; Liu et al., 2020; Yu 

t al., 2018; Han et al., 2018; Brinker et al., 2019; Hosny et al., 

019 ). Some of these mechanisms are TL ( Hosny et al., 2019 ), data

ugmentation ( Bisla et al., 2019; Hosny et al., 2019 ), and multi- 

arget weighted loss functions ( Fernando and Tsokos, 2021; Hosny 

t al., 2019 ). Alternatively, other data and model adjustments that 

ave been learned from large-scale image classification (such as 

ata normalisation into certain ranges or residual connections be- 

ween distant layers) can be used ( Radosavovic et al., 2020; He 

t al., 2019; Wu and He, 2018; Ioffe and Szegedy, 2015; Mishkin 

t al., 2017 ). 

A combination of such mechanisms is used 

n Hosny et al. (2019) where the classification of segmented 

olour skin lesion images of three datasets is performed using TL 

ith a pre-trained AlexNet CNN model. In order to increase the 

umber of dataset samples and lower the model overfit proba- 

ility, augmentation based on image rotation is performed. Data 

ormalisation is also employed as originally applied for the previ- 

usly trained ImageNet data (maintaining the same colour feature 

pace). As commonly used in TL methods, the model classifica- 

ion layer is replaced by an appropriate softmax layer for either 

elanoma and nevus (binary) or melanoma, seborrheic keratosis, 

nd nevus (ternary) discrimination. After fine-tuning the model 

eights on each dataset, and performing augmentation in both 

rain and test sets, the reported system accuracy performance was 

easured as 96 . 86% , 97 . 70% , and 95 . 91% for the used MED-NODE,

erm-IS and Derm-Quest, and ISIC datasets, respectively. Without 

ugmentation, the recorded performance was 88 . 24% , 91 . 18% , and

7 . 31% for the same datasets. 

Additional information about DNN skin lesion applications us- 

ng this datasets can be found in Senan and Jadhav (2019) . 

.2. Segmentation 

In DNN, the majority of works require some form of prior lesion 

egmentation or location identification ( Hosny et al., 2019; Hagerty 

t al., 2019; Gonzalez-Diaz, 2018; Tang et al., 2020; Li et al., 2018; 

avìet al., 2016; Barata et al., 2018; Navarro et al., 2018; Khan et al., 

019 ). Surrounding healthy skin information (or image acquisition 

rtefacts) may originate outlier features or expand the dimension 

f the hyperspace where the parameter search is performed by 

L algorithms (e.g., with CNN), urging for a preprocessing step 

n order to avoiding undesirable outcomes. One example of such 

ethod is described in Navarro et al. (2018) , where local features 

uide image segmentation into super-pixels, which are iteratively 

erged into regions, to form two classes of regions (lesion and 

on-lesion), while considering a spatial continuity constraint on 

he super-pixels colour. 

.3. Datasets 

To the best of the authors’ knowledge, all literature works 

hat experiment on publicly available datasets of skin lesions 

re restricted to 2D coloured-information, which are either 

f dermoscopic or macro-photographic images. Significant re- 

ults have already been achieved using these single modality 

atasets ( Pathan et al., 2018 ), still, the low granularity of the infor-

ation might pose limitations to the classification problem, as only 

lanar lesion-information can be retrieved from such data. Other 
3 
odalities, such as stereoscopic technology ( McDonagh et al., 

008; Smith et al., 2011 ), have already shown alternatives to over- 

ome this limitation by efficiently identifying the type of skin le- 

ion when a third dimension is present. Despite the scarce litera- 

ure on 3D surface of melanoma or related skin lesions, there are 

ndications that depth provides useful information. For this reason, 

he study in Satheesha et al. (2017) tries to use artificially gener- 

ted 3D information to enhance the existing 2D dataset. In order to 

ll the void of 3D skin lesion data, a recent dataset named Skin Le- 

ion Light-fields (SKINL2) was made public to enable research over 

kin lesions’ 3D surface information ( Faria et al., 2019b ). Note that 

his dataset is even smaller than other available 2D datasets like 

he one used in Yao et al. (2021) . At the time of writing, to the

uthors knowledge, there are no works published by other authors 

esorting to this recent dataset. 

.4. Wavelet scattering 

Also relevant for this work is the concept of Scattering Trans- 

orm and its early usage in CNN architectures as alternative to ini- 

ial convolution layers since it provides unique features invariant 

o translation, rotation, scale, and frequency shifting – allowing the 

reation of lesser deep models. 

In Mallat (2012) , the concept of Lipschitz-continuous 

ranslation- and rotation-invariant operators for wavelets is 

resented, where differentiable manifolds are smoothly mapped 

ith invertible functions – diffeomorphism. Lipschitz continuity is 

he central condition to guarantee the existence and uniqueness of 

 solution to an optimisation problem. This condition is discarded 

y CNNs when matching patterns during the training process, 

llowing similar patterns to exist (even if only initially) and 

atch identical solutions ( Bruna and Mallat, 2013 ). This wavelet- 

ropagating operator is a path-ordered product of nonlinear and 

ot-comparable operators, each one computing the modulus of 

 wavelet transform. The scattering transform window is gener- 

ted by a Lipschitz-continuous local integration, which converges 

o a translation-invariant wavelet scattering transform as the 

indow size increases. The scattering coefficients also provide 

epresentations of stationary processes ( Mallat, 2012; Waldspurger, 

017 ). 

The Wavelet Scattering (WS) framework is based on this core 

oncept. Which is used as convolution layers for NNs. The convolu- 

ions obtained from WS – whose filters are fixed to be wavelet and 

ow-pass averaging filters coupled with modulus non-linearities –

ompute translation invariant image representations, which are in- 

ariant to deformations while preserving high frequency informa- 

ion for classification. While this is true, it is important to note that 

eatures acquired with such framework are subject to a level of os- 

illation, however small. In Bruna and Mallat (2013) , the mathe- 

atical analysis of wavelet scattering networks explain important 

roperties of DCNN classification, presenting results for handwrit- 

en digits and texture discrimination. 

Some degree of invariance to translation and diffeomorphism is 

ecessary for many classification or regression tasks. In DL, using 

NNs for example, the use of the WS framework can create an ini- 

ial model which includes one or more layers responsible for trans- 

orming the non-linear input into representations invariant to geo- 

etric transformations (translations, rotation, scale and frequency 

hifting), while preserving a high degree of discriminability ( Bruna 

nd Mallat, 2013; Waldspurger, 2015; Sifre and Mallat, 2013 ). These 

ransformations have two main advantages. First, they perform di- 

ensionality reduction to the data, while allowing a structured 

eature representation to be captured for a given task. Second, the 

eometric-invariant representation that is mapped into a smaller 

imension space allows for simpler model building, especially in 



P.M. M. Pereira, L.A. Thomaz, L.M. N. Tavora et al. Medical Image Analysis 75 (2022) 102254 

t

M

a

s

w

c

t

d

A

s

o

e

a

d

3

a

o

m

a

p

w

t

i

e

R

c

M

b

e

m  

l

a

i

s

t

n

d

c

d

s

t

g

b

m

i

m

F

(

fi

l

a

t

m

m

a

t

y

n

c

a  

Fig. 1. Proposed pipeline: a given light-field (RGBZ) dataset 1) ask for user in- 

put and perform segmentation using Lazy Snapping empowered by SLIC; 2) apply 

augmentation by a random rotation to both RGBZ data and segmentation; 3) pre- 

process data by cropping around segmentation lesion area, hide skin information, 

select which image components to maintain, and resize the cropped image to the 

target experiment size; 4) apply normalisation by transforming the cropped image 

values into a range between [ −2 , 2] ; 5) create the scattering convolutions and ex- 

tract a set of scattering coefficients; and finally 6) apply a classification model that 

sequentially transforms said set into a larger one, which is then reduced through 

pooling for a final fully connected layer to provide the softmax discrimination la- 

bel. 

r

i

s

t

t  

c

n

l

l

he presence of small training sets ( Adel et al., 2017; Bruna and 

allat, 2013; Chudáček et al., 2013 ). 

Across several fields, replacement or augmentation of learn- 

ble convolutions is being performed with this WS framework. In 

hort, the scattering transform is defined as a complex-valued CNN 

hose filters are fixed to be wavelets and the non-linearity is a 

omplex modulus. Because wavelet transform is contractive, as is 

he complex modulus, so is the whole network, resulting in a re- 

uction of variance and added stability relative to additive noise. 

lso, since each layer is a wavelet transform that separates the 

cales of the incoming signal, invariability to deformation of the 

riginal signal is also attained. All these aforementioned properties 

nable the representation of structured signals such as natural im- 

ges, textures, audio recordings, biomedical signals, and molecular 

ensity functions, among others. 

. Proposed approach - Pipeline 

As pointed out before, the aim of this work is to improve the 

ccuracy of melanoma discrimination of conventional methods that 

nly use colour (RGB) information, by including an additional di- 

ension (depth) that characterises the skin surface rugosity. To 

chieve this goal, a pre-processing and classification pipeline is 

roposed to enable the use of RGB and corresponding depth (Z), 

hich are referred to as image components along with a segmen- 

ation mask to be computed at the first stage of the pipeline. The 

nfluence of depth information in melanoma discrimination is also 

valuated when both types of data are simultaneous used (i.e., 

GBZ), in comparison with the use of RGB information only. The 

lassification pipeline, in particular, comprises two main stages: a 

orlet Scattering Transform, which mimics initial DL convolutions 

y computing initial features with high discrimination capacity and 

nabling the use of a shallower model when compared to other DL 

odels like in Hosny et al. (2019) and even Tan and Le (2019) ; fol-

owed by the actual DL model, comprised of learnable convolutions 

nd a softmax output. 

Overall, the proposed pipeline has three types of configurations 

n this study: target classes; target dimensions; and model exten- 

ions. The target classes configuration, which will be further de- 

ailed in Section 4 , sets the classification spectrum as either: bi- 

ary discrimination of melanoma versus nevus samples; or binary 

iscrimination of melanoma versus all other skin lesion types (in- 

luding nevus). The target dimensions configuration sets the data 

imensions (e.g. image size after resize) at a given classification 

tudy ( Section 3.3 ). Finally, the model extensions defines a set of 

raining configurations, which provide extended results to the tar- 

et dimensions and help the interpretation of the model capa- 

ilities ( Section 3.5 and Section 3.6 ). Both target dimensions and 

odel extensions are defined in this section and later exploited 

n Section 4.2 to define the final configuration of the proposed 

ethod for the selected dataset classification targets. 

The processing pipeline comprises six stages, as depicted in 

ig. 1 . Given a RGBZ dataset, where each pixel consists in colour 

RGB) and depth (Z) information, a lesion segmentation mask is 

rstly generated, as described in Section 3.1 . After extraction of the 

esion segmentation mask, a given dataset sample is comprised of 

n RGB image, its depth map Z, and the segmentation mask, i.e. a 

otal of five components at the pixel level (RGBZ plus segmentation 

ask). This dataset undergoes a process of data augmentation by 

eans of random rotations in order to reduce the overfitting prob- 

bility, as described in Section 3.2 . Using the segmentation mask, 

he minimal lesion-bounding-box is determined and the pixels be- 

ond such box are removed from the data – effectively making the 

ew data a rectangular crop of the segmented lesion area. Con- 

urrently, pixel values belonging to healthy skin in this crop area 

re set to zero. At this point, as described in Section 3.3 , the pa-
4 
ameters defined by target dimensions configuration define which 

mage components to maintain and to what shape resize the data 

ample. Then, data is normalised into a defined range ( Section 3.4 ) 

o feed the Morlet Scattering Transform ( Section 3.5 ), which ex- 

racts features to fuel the DL model ( Section 3.6 ). This model in-

reasingly expands the data sample analysis, before feeding the fi- 

al fully connected layer that provides the softmax discriminative 

abel. Detailed information about each stage is provided in the fol- 

owing six subsections. 
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Fig. 2. Lesion segmentation method: given a dataset coloured central-view im- 

age (top-left); the image pixels are grouped through super-pixel over-segmentation 

(top-right); then, visually, some pixels regarding the lesion (in green) and skin re- 

gion (in red) are marked to help guide the segmentation process (bottom-left); 

lastly, a skin lesion segmentation mask is generated (bottom-right). (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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.1. Segmentation 

The segmentation process is based on the algorithm described 

n Li et al. (2004) , dubbed Lazy Snapping, where the method 

o group similar pixels is substituted by the algorithm proposed 

y Achanta et al. (2012) , which has shown to perform well in 

oloured skin lesions ( Navarro et al., 2018 ). Given the RGB im- 

ge data ( Fig. 2 , top-left), pixels are first grouped into super-pixels 

 Fig. 2 , top-right) using the Simple Linear Iterative Clustering (SLIC) 

ethod ( Achanta et al., 2012 ). This pre-processing step reduces the 

imension of the problem to fewer image elements (super-pixels) 

or the subsequent Lazy Snapping algorithm. In this work, the com- 

actness of the SLIC method is set to 10 and its clustering phase is 

erformed for 10 iterations. 

The RGB super-pixels are used to construct a graph in the Lazy 

napping algorithm, where each super-pixel is a node that con- 

ects to other related super-pixels by weighted edges. The value of 

he edge weights depend directly on the correlation probability be- 

ween adjacent nodes. Then, by adaptively cutting edges of smaller 

eights, the algorithm identifies the object region by maximis- 

ng the colour similarity within the object. In order to guide the 

raph-cut algorithm, the user provides information ( Fig. 2 , bottom- 

eft) about pixels belonging to the lesion (foreground, green points 

n the figure) and pixels belonging to the non-lesion skin (back- 

round, red points in the figure). Given the user input, the separa- 

ion between foreground object and background elements is gen- 

rated by the Lazy Snapping algorithm as a segmentation mask 

 Fig. 2 , bottom-right). 

.2. Augmentation 

Classification algorithms, as is the case of DCNN, usually require 

arge amounts of data to yield proper performance (class separa- 

ion) and convergence (feature discovery). The dataset used in this 

ork has a small number of images, therefore it is necessary to 

xpand it by augmenting the existing images. To this aim, all in- 

ut training image samples are randomly rotated from 0 to 360 

egrees prior to be used in the training phase. Additionally, each 

poch comprises 72 passes through the training dataset, which al- 

ows each image to be analysed at 72 angles before a new epoch 

egins with another set of 72 random rotations. This is a simi- 
5 
ar approach to that implemented in Hosny et al. (2019) but in 

his case the rotation-degree is not restricted and augmentation 

s not used during the test phase. The selection of this as our 

nly augmentation method was made to fairly compare our results 

ith those obtained with the selected baseline method (detailed in 

ection 4.4 ). 

At this stage, each input training image (i.e., dataset sample) 

omprises five components ( C): an RGB image, the corresponding 

epth data, and the lesion segmentation mask. All image channels 

re geometrically transformed by the same rotation, keeping the 

nformation aligned, such that the segmentation mask still pro- 

ides the correct lesion location in both the RGB and depth infor- 

ation. 

.3. Data pre-Processing 

Given an RGBZ dataset sample and its lesion segmentation 

ask, the pre-processing stage sets the target dimensions con- 

guration parameters for the experimental setup. There are two 

arameterisations: i) selection of the image components; and ii) 

odel input image size. Besides these options, the image data en- 

ering the pre-processing stage is cropped to the bounding lim- 

ts defined by the lesion segmentation mask. Concurrently, the 

ealthy skin region in this cropped area is removed by setting the 

orresponding pixel values to 0 (zero). The removal of the sur- 

ounding healthy skin region is intended to focus the model on the 

esion, not allowing speculations about possible patterns or fea- 

ures of regions outside the lesion area. 

In regard to the image components , the pipeline can operate in 

ifferent modes by exploiting either only colour (RGB) data, only 

epth (Z) data, or both colour and depth (RGBZ) data. Only the 

elected components are used by the proposed algorithm. The se- 

ection of such different operational modes, has obvious impact on 

he learning process and consequently on the model, allowing to 

ompare the performance between models obtained by learning 

ith different image components. 

In regard to the image size parameter, three possible resizes are 

efined: to 32 × 32 , to 64 × 64 , or to 128 × 128 pixels. This image

esize is necessary because the crop of the lesion region generates 

ifferent area sizes for different images, creating conflicts of input 

ata sizes for the model along the proposed pipeline. Additionally, 

onsidering that the original image size may be too large, depend- 

ng on the number of images available in the dataset, the model 

esources may be inadequate, for instance, accelerating the model 

verfit. Therefore, the last step of the pre-processing stage is to 

esize the existing images to a fixed (smaller) size using bilinear 

nterpolation. 

.4. Normalisation 

Given the image components entering in this stage, the respec- 

ive data is normalised to improve the model convergence. This is 

 usual procedure due to the fact that CNNs, or NN in general, per- 

orm better if the input data is constrained to certain ranges. 

For the colour components, the normalisation transforms the 

ata to the approximate range [ −2 , 2] as in other DCNN appli-

ations (namely Hosny et al. (2019) ). This is, as traditionally ap- 

lied in ImageNet, normalisation is carried out by subtracting 

he values of (0 . 485 , 0 . 456 , 0 . 406) and dividing by the values of

0 . 229 , 0 . 224 , 0 . 225) for the R, G, and B components, respectively,

o that the value range is comprised between [ −2 , 2] . For the

epth component, the same operation is performed by subtract- 

ng 6.26 and dividing 3.03, in order to constrain it to the range of 

 −2 , 2] . This normalisation stage operates on either colour, depth 

r both components according to the selection made in the previ- 

us data pre-processing stage. 
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.5. Morlet scattering 

At this stage, a dataset sample is represented by either 3, 1, or 

 channels ( C) – only RGB, only Z, or RGBZ, respectively. Prior to 

e processed by the classification model ( Section 3.6 ), unique fea- 

ures invariant to rotation, translation, and scale are extracted us- 

ng a WS framework with a Morlet wavelet as the mother wavelet 

 Sifre and Mallat, 2013 ). In addition to the extraction of unique fea-

ures, this process also reduces the data volume and, consequently, 

urther prevents model overfitting. This extraction of features can 

e performed either by calculating only first-order coefficients or 

y extending to second-order calculations, which are considered as 

art of the model extensions parameters. 

The mother wavelet ( ψ(t) ) used in this work is the Mor- 

et wavelet and, to speed up the process, the convolutions are 

erformed in the Fourier domain. The corresponding family of 

avelets is generated by dilation and translation from the mother 

avelet as in Eq. 1 , where a is a scale factor and b is the time

ndex, while the factor | a | 1 / 2 is used to ensure energy preserva- 

ion. In this work, the input data is represented as 2D matrices 

f N × N values, where N can only assume the values 32, 64, or 

28. Let x [ n ] be any signal on this N × N grid, as x [ n, m ] . The pe-

iodic convolution with another signal y [ n ] is denoted by x � y [ n ] .

he scattering transform uses a wavelet filter bank for each order 

reater than zero, that is ψ 

(1) 
λ1 

[ n ] for the first-order and ψ 

(2) 
λ2 

[ n ] for

econd-order respectively, where λ1 and λ2 are frequency indices 

n the sets �1 and �2 . The low-pass filters are represented by 

J [ n ] , specifying an averaging log-scaling filter of 2 J (which nearly 

inearises the variations of scattering coefficients), where J is a reg- 

lator variable. Input data partitioning is also computed in relation 

o J as non-overlapping patches of size 2 J , thus producing N/ 2 J par- 

itions. This logarithmic non-linearity is first applied to invariant 

cattering coefficients to linearise their power law behaviour across 

cales. This is similar to the normalisation strategies used with 

ag of words ( Lazebnik et al., 2005 ) and deep NNs ( LeCun et al.,

010 ). Together with a non-linear function p(t) , the filters com- 

rise the scattering transform. The non-linear function employed 

n this work is the complex modulus p(t) = | t| , as in Andén and

allat (2014) ; Bruna and Mallat (2013) . 

 a,b (t) = | a | 1 / 2 ψ 

(
t − b 

a 

)
(1) 

The zeroth-order scattering coefficient S 0 (x [ n ]) is the local av- 

rage as given by Eq. 2 . The first-order scattering coefficients are 

btained from convolution of x [ n ] with the first-order wavelet fil- 

er bank, as defined in Eq. 3 . These are the least computation- 

lly expensive coefficients to be used in the classification process. 

econd-order coefficients are obtained as an extension of the first- 

rder ones, as defined in Eq. 4 , where further data structures are 

aptured by decomposing the p(·) results using the second filter 

ank ψ 

(2) 
λ2 

. Note that this is only performed for a subset �2 , ∗ ⊂ �2 

efined only for the elements of �2 corresponding to elements of 

1 , since results from the first-order p represent low-frequencies. 

he Morlet filters are similar to normalised zero-mean Gabor func- 

ions and are, therefore, computed as such for simplicity. To reduce 

omputational load, data obtained from p(t) is down-sampled as 

n Sifre and Mallat (2014) . 

 0 (x [ n ]) = (x � φJ )[ n ] (2) 

 1 (x [ n , λ1 ]) = 

(
p 
(
(x � ψ 

1 
λ1 

)[ n ] 
)

� φJ 

)
[ n ] , λ1 ε�1 (3) 

 2 (x [ n , λ1 , λ2 ]) = 

(
p 
(
(p 

(
(x � ψ 

1 
λ1 

)[ n ] 
)

� ψ 

2 
λ2 

)[ n ] 
)

� φJ 

)
[ n ] , 

λ1 ε�1 , λ2 ε�2 (λ1 ) (4) 
6 
In this work, the J regulariser is always set to 2 and a rota- 

ion parameter r, which defines how many filter rotations are per- 

ormed to induce rotation-invariance, is set to 8. Since this rotation 

arameter is limited in number, some sensitivity to rotation still 

xists, thus different rotated images produce slightly different fea- 

ures. Assuming the already mentioned N × N pixel-grid, the Scat- 

ering Transform of the WS framework with a scale J and r an- 

les will generate a 3D set of features V S , as expressed in Eq. 5 , for

ethods configured to use only first-order coefficients, or as ex- 

ressed in Eq. 6 , for methods including second-order coefficients. 

n input dataset image generates a one-fourth-sized grid 

ˆ N of ei- 

her 8 × 8 , 16 × 16 , or 32 × 32 , with either K = 17 or K = 81 fea-

ure values in each cell, depending if they are configured to use 

nly first-order or both first-order and second-order coefficients. 

or example, if the experiment is configured to run RGB com- 

onents (i.e. three pixel-grids, C = 3 ) with first-order coefficients, 

hen three sets are generated, each with K = 17 features per cell –

 total of three 17 × ˆ N feature sets per dataset image. 

 S 1 K = 1 + rJ , V S 1 x = 

N 

2 

J 
, V S 1 y = 

N 

2 

J 
(5) 

 S 2 K = 1 + r J + 

r 2 J(J − 1) 

2 

, V S 2 x = 

N 

2 

J 
, V S 2 y = 

N 

2 

J 
(6)

Prior to the next stage, feature sets are stacked along the V SK 

imension to generate a single feature set ˆ V of size KC × ˆ N . This 

eans, for example, if three blocks are produced (as occurs when 

rocessing RGB data), then the new set ˆ V will maintain the sec- 

nd and third dimensions, while the first dimension grows to three 

imes the size – assembling a ˆ V of 3 K × ˆ N features. Stacking is per- 

ormed on the first dimension ( K), in opposition to other dimen- 

ions of size N, so that features regarding the same image loca- 

ion but of different components remain grouped together. That is, 

hen working with the image components, vectors of K features 

hat are extracted from each individual component (in a particu- 

ar region) are stacked together in order to simplify the visualisa- 

ion of the feature-information by the subsequent CNN classifica- 

ion model convolutions. 

.6. Classification 

As depicted in Fig. 3 , given a set of features ˆ V , the classification

s performed by a CNN model that, apart from the first convolu- 

ions, is a fixed-size network for the whole experiment. The model 

omprises three main parts: i) a fitting part, where input features 

re convolved with a kernel designed to fit the data to the fixed 

etwork dimensions; ii) an expanding part, where two repeating 

locks process and expand the data; and iii) a classification part, 

here a fully connected layer provides the classification output. 

For all convolutions, the value of the stride is 1 pixel, the ker- 

el size is 3 × 3 unless stated otherwise, and the value of the 

ias is set to zero. In all batch-normalisation layers ( Ioffe and 

zegedy, 2015 ), the running estimates parameter is set to 0.1 and 

ossess learnable affine-transformation parameters, unless stated 

therwise. For the remainder of this section, every convolution 

ayer is followed by a batch-normalisation and a Relu activation 

unction, unless stated otherwise. 

The fitting part of the network ( i ) comprises batch- 

ormalisation and a convolution layer of 32 kernels. In this first 

onvolution layer, the feature-set ˆ V , which has an experiment- 

ariable size KC × ˆ N , is transformed to a fixed size of 32 × ˆ N . 

he first part of the network has K × C × 288 + 64 trainable 

arameters. Additionally, the initial batch-normalisation has no 

earnable affine-transformation parameters and only exists to 

urther regularise the input data range for the model. 

The expanding part of the network ( ii ) is a structure that re- 

eats twice, each comprising four working blocks (WB) with a 
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Fig. 3. Model pipeline. Receiving a feature-set ˆ V of scattering coefficients, train a 

deep learning model comprised of three main parts: (i) a initial data fitting, (ii) 

a main processing part with convolutions that expand a given data volume, and 

finally (iii) a fully connected layer. 
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esidual connection. The only difference from one structure to the 

ext is the target number of kernels in every convolutional layer, 

hich are 64 and 128 for the first and second structure, respec- 

ively. Each of the four mentioned working blocks comprises two 

onvolutions. The first working block of each structure has an ad- 

itional third convolution, which receives the same data as the 

rst convolution (performing the same operations). However, this 

lock’s kernels are of size 1 × 1 and there is no Relu at the end.

he output of this third convolution is added to the second convo- 

ution batch-normalisation output – before Relu – as residual in- 

ormation. These two-parts of the network structure have 279 , 680 

nd 1 , 116 , 416 trainable parameters, respectively. 

The classification part of the network ( iii ) performs a binary 

oftmax classification with the result of a biased fully connected 

ayer of 512 inputs to two neurons. This layer is adopted, with the 

raditional sigmoid activations, as it is an universal approximator 

 Csáji, 2001 ) for classification problems. Since the set ˆ V entering 
7 
he network has size KC × ˆ N , at this point, after all convolutions, 

t will have 128 × ˆ N . This means that it will have a variable size

n the second and third dimensions – represented by ˆ N . In order 

o encapsulate this information into a fixed size, so that models 

ompiled for different input sizes remain comparable, an average 

ooling layer is added before the fully connected layer to adapt- 

bly reduce the data volume into a fixed sized 128 × 2 × 2 volume 

i.e. the referred 512 input values of the fully connected layer). This 

ast part of the network has 1 , 026 trainable parameters. 

The fully described network is trained using Stochastic Gradi- 

nt Descent with Nesterov momentum ( Sutskever et al., 2013 ). The 

earning rate is fixed at 0.001 and the momentum at 0.9. Addition- 

lly, weight decay (L2 penalisation) is also performed at 0.0 0 05, in 

rder to exponentially decay weights to zero, limiting the number 

f free parameters in the model and avoiding rapid over-fitting. 

In this work, instead of having the learning rate influencing 

he new momentum velocity by scaling the gradients, the veloc- 

ty does not depend on the learning rate. Rather, the learning rate 

s used when updating the model parameters, scaling the whole 

elocity equation result (meaning that it also scales the previous 

omentum-ed velocity). This was performed to smooth the model 

earning, as to further challenge early overfitting. 

Finally, to promote balanced classification-error corrections in 

he network during training, the model softmax-cross-entropy loss 

unction is weighted (via cost matrix) for a given class, as the num- 

er of training samples in the largest class divided by the given 

lass number of training samples. Effectively, this makes one error 

n the smaller class more significant than one error in the larger 

lass, implicitly balancing the dataset. 

. Experimental assessment 

The experimental results presented in this section are expressed 

n terms of percentage of classification accuracy ( ACC ), sensitivity 

 SEN ), and specificity ( SPE ), inline with most of the cited works, 

here SEN represents the successful melanoma identification rate 

nd SPE the successful identification of the other class. Since this is 

n unbalanced problem, the balanced-accuracy ( BAC ) is introduced 

s defined in Hu et al. (2019) , which corresponds to the average 

alue between sensitivity and specificity, as shown in Eq. (7) . 

AC = 

SEN + SPE 

2 

(7) 

These results encompass two main classification experiments 

 target classes ), both executed applying 10-fold Cross Validation 

CV). The first experiment, named “MvsN ”, refers to melanoma 

lassification against nevus samples while the second experiment, 

amed “MvsAll ”, performs the classification of melanoma versus 

ll other skin lesion types (including nevus). Note that there is 

o contamination between folds: original images selected for a 

iven training fold are augmented by rotation producing new im- 

ges used within the same fold; models are reset between CV it- 

rations. No image augmentation is performed in the testing step. 

dditionally, because CV is used, the previously mentioned met- 

ics can be generated in two ways: at a “Dataset Level ”, by merging 

ll fold-results and calculating the metrics once; or by perform- 

ng a “Cross-Validation Average ” of the metric-results attained in 

ach fold. By default, results are presented at a Dataset Level , un- 

ess stated otherwise. This is due to the fact that, given the size of 

he dataset, CV folds can have, for example, only one testing image 

or the melanoma class. As a result, the metric values become ei- 

her 0% or 100%. Therefore, average values and associated standard 

eviations are not good performance indicators. 

The learning process was run for 7 epochs in all executions, 

iming for approximately 500 dataset passes through the model, 

s each epoch comprises 72 random rotation of each sample. In 
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Table 1 

10-fold Cross Validation Dataset Distribution. 

Dataset Label 

Folds (train | test) 

1 to 4 5 to 6 7 to 10 

MvsN Melanoma 13 × 72 | 1 13 × 72 | 1 12 × 72 | 2 
Nevus 33 × 72 | 3 32 × 72 | 4 32 × 72 | 4 

MvsAll Melanoma 13 × 72 | 1 13 × 72 | 1 12 × 72 | 2 
All 76 × 72 | 8 76 × 72 | 8 75 × 72 | 9 
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Fig. 4. Sample SKINL2 dataset images. The left column displays RGB images, the 

middle column shows Z values in grayscale, and the right column contains gen- 

erated segmentation mask images. From top to bottom, samples show: Angioma, 

Carcinoma, Dermatofibroma, Melanoma, Nevus, and Seborrheic Keratosis. 

Fig. 5. Box-plot of BAC (with its 12 data points) for the different batch sizes in 

MvsN across the remaining parametrisation options. 
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he model extensions configuration, the following seven batch sizes 

ere used for the model: 5, 10, 15, 20, 40, 60 and 80. 

The remainder of this section is organized as follows: 

ection 4.1 describes the dataset and the target classes partition- 

ng used in the experimental evaluation. Section 4.2 describes the 

arametrisation selection of the final model and Section 4.3 shows 

he effects of excluding image segmentation from the pipeline. 

hen, results are discussed and compared to current state-of-the- 

rt baseline in Section 4.4 and to other state-of-the-art models in 

ection 4.5 . 

.1. Dataset 

The proposed pipeline was evaluated using the publicly avail- 

ble SKINL2 dataset ( Faria et al., 2019a ). The dataset contains light- 

eld imagery of skin lesions, captured with a Raytrix R42 camera 

t a hospital facility (Centro Hospitalar de Leiria, Portugal) from pa- 

ients previously screened by a physician during dermatology clini- 

al appointments. All volunteers received an explanation about the 

rocedure and purpose of the study, and also signed an informed 

onsent form. A health ethics committee evaluated and approved 

he procedures related to the image acquisition, storage, and pub- 

ication. Each light-field image comprises 3858 × 2682 pixels per 

GBZ component. 

In this work, the second ( Faria et al., 2019b ) and third ver-

ions of this dataset were used. Both versions of the dataset can 

e found in the same online repository 1 . Both versions provide 

ore detailed images, due to their increase in lens magnification 

f ≈ 30% in comparison to its first version. At the time of publica- 

ion of this paper, the third version is still under development and 

he available data was used as an extension of the second version. 

n total, 98 images were used (70 from the second dataset and 28 

rom the third). The combined dataset comprises 14 melanomas, 

6 nevi, and 48 other lesion types (16 angiomas, 6 basal cell carci- 

omas, 1 dermatofibroma, 24 seborrheic keratoses, and 1 verruca). 

ample RGB and Z image data for different dataset labels (and pro- 

uced segmentation mask) are presented in Fig. 4 . 

Therefore, experiment MvsN opposes 14 melanoma samples 

gainst 36 nevus samples, while experiment MvsAll confront 14 

elanoma samples against all other 84 non-melanoma samples. 

or the readers convenience, the number of images used in each 

old of the two experiments is depicted in Table 1 . Every training 

et is augmented by ×72 , while testing is not. 

.2. Parameter selection 

This section discusses the following three parameter configura- 

ions: the coefficients order (i.e. either first or second order coeffi- 

ients), the target size of resized images and the model batch size. 

To understand the influence of the batch size on the data com- 

onents, the results for the more balanced MvsN dataset are first 

nalysed. Since these experiments contain different amounts of 

ata samples – 50 for MvsN and 98 for MvsAll – it is expected 
1 Online repository: http://on.ipleiria.pt/plenoisla 

d

s  

8 
hat the preferred batch size will also differ in a similar ratio. Re- 

orting to a box and whisker plot, Fig. 5 depicts the average BAC 

etric-value for the different batch sizes in MvsN independently of 

he image size, the coefficient order, and the use of either RGB or 

epth data. This figure also displays the 12 data points generated 

o build each box plot (a combinatorial execution of two coefficient 

rders × three images sizes × use of either RGB or depth). An in- 

pection of the results allow us to select the batch size of 40 as the

est configuration, due to its average BAC performance of 75 . 30% . 

A similar analysis is performed for the MvsAll experiment, as 

epicted in Fig. 6 . In this figure, box-plot data-dispersion appears 

maller than in Fig. 5 , most likely due to the increase in the dataset

http://on.ipleiria.pt/plenoisla
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Fig. 6. Box-plot of BAC (with its 12 data points) for the different batch sizes in 

MvsAll across the remaining parametrisation options. 

Table 2 

Average BAC for each image resize and for 1st and 2nd 

order coefficients, over the possible data components - 

MvsN experiment. 

Order 

Image 

Size 

Data Components 

RGB Z 

1st 32 × 32 78.08 ±2.57 64.29 ±5.76 

64 × 64 81.25 ±6.41 68.30 ±1.76 

128 × 128 79.32 ±7.03 65.67 ±1.92 

average 79.55 66.09 

2nd 32 × 32 77.48 ±3.11 58.28 ±4.71 

64 × 64 82.89 ±2.70 67.01 ±3.74 

128 × 128 76.36 ±4.72 59.87 ±5.56 

average 78.24 61.72 
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Table 3 

Average BAC for each image resize and for 1st and 2nd 

order coefficients over the possible data components - 

MvsAll experiment. 

Order 

Image 

Size 

Data Components 

RGB Z 

1st 32 × 32 68.60 ±1.85 56.99 ±4.77 

64 × 64 71.73 ±7.73 60.71 ±4.15 

128 × 128 68.45 ±5.57 62.05 ±3.45 

average 69.59 59.92 

2nd 32 × 32 66.67 ±5.37 62.50 ±3.04 

64 × 64 74.55 ±2.47 62.35 ±3.26 

128 × 128 73.96 ±7.72 60.71 ±4.44 

average 71.73 61.86 
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ize. Starting from the left, MvsAll results appear initially similar to 

vsN : a compact spread at batch size 20; an average improvement 

eaking at 40 with some data points polling down the average per- 

ormance; then starting to lose performance at batch size 60. In 

pposition, the average BAC performances rise again to a new peak 

t batch size 80, providing a even better average performance as 

ell as a more compact behaviour than with 40. This is expected 

ince the amount of data samples is almost twice in the MvsAll 

xperiment than in the MvsN . 

Thus, the selected batch size for the MvsN and MvsAll experi- 

ents are 40 and 80, respectively. 

The coefficient order and the image size for each experiment 

an also be determined following the same approach. Table 2 de- 

icts the average BAC results for the image size parameter in each 

ata dimension when using either the first- or second-order coef- 

cients. BAC values are the averaged results obtained by the dif- 

erent batch sizes. Note, however, that because batch sizes 5, 10, 

nd 15 performed so poorly, they were excluded from the results 

resent in the following tables so to preserve statistical signifi- 

ance. This means each (non-italicized) value is an average of four 

xecutions of different batch sizes (including CV). 

As can be seen in Table 2 , the best average BAC performance 

n each coefficient order (marked in boldface) is achieved by the 

ntermediate image size of 64 × 64 , with 81 . 25% and 68 . 30% BAC

erformance in the first-order, for RGB and depth respectively, and 

2 . 89% and 67 . 01% in the second order results. The higher per-

ormance in the intermediate image size is expected because us- 

ng the smaller 32 × 32 image size removes too much informa- 

ion due to the down-sampling. However, using a larger 128 × 128 

mage size slightly decreases the classification performance as the 

odel quickly overfits on more detailed features provided by the 

S framework during the training on this small dataset. 

Table 2 also allows one to analyse the average performance, for 

ll images sizes and batch sizes, (marked in italics) for the two dif- 

erent coefficient orders. The best average result is obtained for the 
9 
rst-order coefficients with 79 . 55% and 66 . 09% , for RGB and depth

espectively, against 78 . 24% and 61 . 72% BAC when using second- 

rder coefficients. 

The results shown in Table 3 for the MvsAll experiment were 

btained under the same test conditions. In this case, the best av- 

rage BAC is not achieved for the same image size. Yet, the dif- 

erent results obtained for each image size allows to observe that 

4 × 64 offers the best compromise in both coefficient orders. For 

xample, in the first-order coefficient results, selecting 128 × 128 

nstead of 64 × 64 , causes an improvement of 1.3 percentage points 

 pp – unit measure of the arithmetic difference between two per- 

entages) in the Z average BAC , while for the RGB the performance 

rops 3 . 28 pp. Therefore, 64 × 64 is preferred, favouring the RGB 

lassification. This analysis also works for the second-order coeffi- 

ients. If the 32 × 32 image size is selected instead of the 64 × 64 ,

he average BAC for Z improved by 0 . 15 pp, while for RGB it drops

 . 88 pp. Therefore, 64 × 64 is preferred, also favouring of the RGB 

lassification. 

Similarly to the image size, the best coefficient order for the 

vsAll experiment is not an obvious choice. Resorting to the same 

ationale as in MvsN , in Table 3 the best average BAC across im- 

ge and batch size (marked in italics) is obtained by the second- 

rder coefficients with 71 . 73% and 61 . 86% , for RGB and Z respec-

ively, against 69 . 59% and 59 . 92% for the first-order coefficients. 

his can be partially explained due to the added variability in the 

ataset comprising the MvsAll experiment. In this case, there are 

even different skin lesion types, instead of only two, creating a 

roader view of the classification problem and, consequently, re- 

uiring more detailed features, as present in second-order coeffi- 

ients. The difficulty in selecting the best parameters in the case 

f the MvsAll experiment is probably due to the fact that in this 

xperiment classes are even more imbalanced than in MvsN . 

From these comparisons, it is safe to conclude that a good 

ompromise in terms of the average BAC metric performance is 

chieved when configuring the image size as 64 × 64 , using first- 

rder coefficients for the MvsN experiment and second-order coef- 

cients for the MvsAll experiment. 

.3. Ablation study of the segmentation 

In this section an ablation study about the influence of the use 

f a segmentation method in the pipeline is performed. Having 

reviously determined the best average parameters, this study ver- 

fies the impact of not using the lesions segmentation masks in the 

verall classification results. By not using a segmentation mask to 

etect the ROI, it becomes impossible to hide skin pixels and re- 

ize the ROI information to the target experiment size. Therefore, 

n this ablation study, the removal of the segmentation information 

rom the pipeline forces the skin pixels to stay in the image, which 

s later used in the remaining process. This means that when re- 

ized to the target image size, the full image is used instead of only 
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Table 4 

BAC results for the ablation study of the use of the segmentation masks paired with 

the optimal selected parameters. 

Dataset 

Image 

Size Order 

Batch 

Size 

Data 

Components 

Segmentation 

With Without 

MvsN 64 × 64 1 40 RGB 82.34 57.54 

Z 66.67 60.91 

RGBZ 93.65 73.02 

MvsAll 64 × 64 2 80 RGB 71.43 53.57 

Z 55.95 50.00 

RGBZ 85.12 61.90 
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he ROI. Table 4 provides the results for pipeline execution, with 

nd without the segmentation mask. From the attained results, it 

s clear that using the segmentation mask to clear out healthy skin 

nd make the algorithm focus on the lesion area provides superior 

esults. On average, not using the segmentation mask decreases the 

AC performance by 17 . 06 pp and 15 . 67 pp for the MvsN and MvsAll

xperiments, respectively. 

.4. Comparison results with baseline method 

Using the parameters defined in the previous section, that is: 

mage size of 64 × 64 ; first-order coefficients and batch size 40 

or the MvsN experiment; and second-order coefficients and batch 

ize 80 for MvsAll – the proposed model achieves the results 

epicted in Table 5 . Results are shown both at a Dataset Level 

nd by performing Cross-Validation Average . These results were ob- 

ained using RGB and Z (depth) components individually – Pro- 

osed (RGB) and Proposed (Z) respectively – and with all com- 

onents – Proposed (RGBZ) . The results are also compared to the 

tate-of-the-art method in Hosny et al. (2019) – named Baseline 

RGB) – providing classification results for both experiments ( MvsN 

nd MvsAll ). This classification method was selected as baseline 

ince it performs comparisons with three well-known 2D datasets 

nd outperforms other 11 state-of-the-art algorithms. Averaging 

cross the three datasets mentioned in its’ work, this method re- 

orts a 96 . 8% accuracy performance when using data augmenta- 

ion and 88 . 9% when not using it. At the time of writing, to the

uthors knowledge, there are no other works published by other 

uthors resorting to the SKINL2 dataset, which could be used for 

omparison. 

The Baseline (RGB) method was strictly implemented as ex- 

ressed in Hosny et al. (2019) . This means that the pre-trained 

lexnet model was used for Transfer Learning after replacing the 

ast three classification layers with new random weights and ap- 

lying a binary classification softmax layer. Prior to training, all 

mages undergo the lesion segmentation methodology reported by 

osny et al. (2019) , which features the manual optimisation of 

hree parameters in each image to find the optimal segmentation 

ask. The dataset is also augmented by 72 times by performing 
Table 5 

Proposed Method Results. 

Dataset Method 

Dataset Level Cross-Va

ACC SEN SPE BAC ACC 

MvsN Baseline (RGB) 68.00 21.43 86.11 53.77 65.17 

Proposed (RGB) 84.00 78.57 86.11 82.34 84.67 

Proposed (Z) 74.00 50.00 83.33 66.67 73.50 

Proposed (RGBZ) 94.00 92.86 94.44 93.65 95.00 

MvsAll Baseline (RGB) 73.47 14.29 83.33 48.81 73.33 

Proposed (RGB) 86.73 50.00 92.86 71.43 86.97 

Proposed (Z) 85.71 14.29 97.62 55.95 86.26 

Proposed (RGBZ) 89.80 78.57 91.67 85.12 90.10 

Baseline: as in Hosny et al. (2019) 

10 
2 random rotations (in the range [0,355]) to every image. If an 

mage does not fit the Alexnet model input size, a resizing oper- 

tion is performed. During the training, back-propagation is used 

nd the Stochastic Gradient Descent algorithm is used to update 

he weights with a learning rate of 0.001. Additionally, the batch 

ize and number of training epoch are fixed to 10 and 32, respec- 

ively. Results are obtained via 10-fold CV. 

Using the dataset employed in this work (SKINL2), the baseline 

ethod provides a 68 . 00% and 73 . 47% accuracy performance with 

3 . 77% and 48 . 81% BAC for the MvsN and MvsAll experiments, re-

pectively. While the accuracy increases in the MvsAll experiment 

which has 48 additional samples in comparison with MvsN ), it is 

mportant to point-out that the SEN metric decreases by 7 . 14 pp

ven though the number of melanoma samples is the same (14) 

n both experiments. This decrease represents the misclassification 

f one additional melanoma, identifying only 2 out 14 in the MvsN 

xperiment and 3 in the other. The SPE metric is not comparable 

ince the amount of samples differs between experiments. Across 

he 10-fold CV, the baseline method correctly identifies 31 out of 

6 nevus in the first experiment, and 70 out of 84 non-melanoma 

esions in the second experiment. 

As can be seen in Table 5 for the MvsN experiment, the 

roposed approach ( Proposed (RGBZ) ) achieves 94 . 00% accuracy 

nd 93 . 65% BAC , an increase of 26 . 00 pp and 39 . 88 pp, respec-

ively, when compared to the Baseline (RGB) method. This im- 

rovement comprises the utilisation of both RGB and depth com- 

onents. If only the RGB data dimension is used, the proposed 

ipeline achieves only 84 . 00% accuracy and 82 . 34% BAC , 10 . 00 pp

nd 11 . 31 pp lower than the results achieved when using both com- 

onents, respectively. Also, the use of only the depth component 

oes not perform as well as using RGB component, however its 

erformance is still superior to the baseline method in all metrics 

xcept SPE . 

As expected, the combined use of both RGB and depth compo- 

ents surpasses the individual usage of only one of them, allowing 

ne to infer that the depth component owns discriminative power 

ot present in RGB. For instance, exploring the label predictions 

erformed by the separate RGB and Z models, it is clear that two 

elanoma samples, which are correctly classified using depth, are 

ot correctly classified when using RGB only. Getting the two com- 

onents together in the new model (RGBZ) also allows the pre- 

iction of the other two melanoma samples, which were wrongly 

lassified using only RGB components, thus supporting the thesis 

hat the skin lesion surface has potential to improve the discrimi- 

ation between melanoma and nevus. 

For the experiment MvsAll , the results achieved by the pro- 

osed pipeline are also shown in Table 5 , where Proposed (RGBZ) 

ttains 89 . 80% accuracy and 85 . 12% BAC , an increase of 16 . 33 pp

nd 36 . 31 pp respectively, when compared to the Baseline (RGB) 

ethod. Like in the MvsN experiment, this increase corresponds to 

he use of both RGB and depth components. When using the RGB 

omponent alone, the proposed approach achieves only 86 . 73% and 
lidation Average 

SEN SPE BAC 

±27.68 15.00 ±25.00 83.33 ±33.79 49.17 ±24.81 

±13.86 85.00 ±25.00 85.83 ±15.28 85.42 ±14.94 

±17.72 45.00 ±41.67 83.33 ±18.99 64.17 ±23.21 

±11.79 95.00 ±16.67 95.00 ±11.02 95.00 ±12.67 

±9.05 15.00 ±35.36 83.06 ±13.54 49.03 ±16.17 

±6.71 55.00 ±43.30 92.78 ±8.89 73.89 ±19.27 

±8.56 15.00 ±16.67 97.78 ±7.41 56.39 ±9.53 

±8.97 75.00 ±44.10 91.94 ±10.89 83.47 ±21.31 
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Table 6 

EffecientNet Results. 

Batch size 

EfficientNet 

version 

MvsN MvsAll 

ACC SEN SPE BAC ACC SEN SPE BAC 

20 B0 66.00 50.00 72.22 61.11 79.59 42.86 85.71 64.29 

B1 76.00 78.57 75.00 76.79 81.63 42.86 88.10 65.48 

B2 78.00 71.43 80.56 75.99 77.55 57.14 80.95 69.05 

B3 68.00 42.86 77.78 60.32 77.55 57.14 80.95 69.05 

B4 76.00 57.14 83.33 70.24 76.53 42.86 82.14 62.50 

B5 78.00 71.43 80.56 75.99 76.53 57.14 79.76 68.45 

B6 70.00 64.29 72.22 68.25 78.57 57.14 82.14 69.64 

40 B0 78.00 50.00 88.89 69.44 82.65 57.14 86.90 72.02 

B1 74.00 64.29 77.78 71.03 84.69 50.00 90.48 70.24 

B2 80.00 71.43 83.33 77.38 79.59 42.86 85.71 64.29 

B3 74.00 42.86 84.11 64.48 82.65 42.86 89.29 66.07 

B4 78.00 57.14 86.11 71.63 82.65 57.14 86.90 72.02 

60 B0 72.00 64.29 75.00 69.64 82.65 42.86 89.29 66.07 

B1 76.00 71.43 77.78 74.60 84.69 57.14 89.29 73.21 

B2 78.00 71.43 80.56 75.99 84.69 57.14 89.29 73.21 

B3 74.00 57.14 80.56 68.85 81.63 28.57 90.48 59.52 

80 B0 68.00 57.14 72.22 64.68 77.55 42.86 83.33 63.10 

B1 72.00 71.43 72.22 71.83 82.65 57.14 86.90 72.02 

B2 80.00 64.29 86.11 75.25 83.67 57.14 88.10 72.62 

7  

r

c

r

r

g

g

fi

a

b

t

r

i

7

t

l

m

p

b

c

t

m

t

t

d

l  

P  

d

t

m

s

E  

B

c

o

c

m

c

I

p

o  

t

p

w  

F

r

s

8  

t

t

c

r

c

t

o

4

a

w

f

m

i

e

a

G

a

f

a

t

s

m

s

t

t

+
r  

M

1 . 43% , that is 3 . 07 pp and 13 . 69 pp lower than the Proposed (RGBZ)

esults, although still superior to the Baseline (RGB) method. 

If the method uses only the depth component, similarly to the 

ase of MvsN , the results are also lower than the Proposed (RGBZ) 

esults, yet still superior to the Baseline (RGB) results for all met- 

ics. In this MvsAll experiment, however, the data imbalance is 

reater than in MvsN . Incorrect melanoma classifications almost 

o unnoticed by the accuracy metric since, for instance, a classi- 

cation of all data as non-melanoma image samples immediately 

chieves 85 . 71% accuracy. Nevertheless, this would be noticeable 

ecause the BAC metric would only achieve 50 . 00% . This means 

hat, although the proposed RGBZ method achieves a similar accu- 

acy performance, the total number of melanoma-misclassification 

s lower, because the BAC performance is 85 . 12% , accounting for 

8 . 57% SEN in this case. This corresponds to the correct classifica- 

ion of 11 out of 14 melanoma samples, nine more than the Base- 

ine (RGB) . 

In this section, all comparisons with the baseline classification 

ethod have shown that the proposed approach provides superior 

erformance results. Accordingly, this can be seen as an indirect 

enchmark comparison of the proposed method with the works 

ompared in Hosny et al. (2019) and other works that resorted 

o the same dataset and metrics. In essence, since the baseline 

ethod reports results superior to 10 other works, it is expected 

hat the proposed approach could also show results superior to 

he mentioned works, if they were to be applied to the SKINL2 

ataset. This hypothesis may be further extended to other works 

ike Pereira et al. (2020) ; Tang et al. (2020) ; Barata et al. (2018) ;

athan et al. (2018) ; Hagerty et al. (2019) , that use the same

atasets and metrics as the baseline method. 

In addition to the discussed results, it is worthwhile to men- 

ion some studies that compare the results of computational 

odels with human classification of skin lesions performed by 

pecialists, i.e. dermatologists. This is the case, for instance of 

steva et al. (2017) ; Marchetti et al. (2018) ; Haenssle et al. (2018) ;

rinker et al. (2019) , where the SEN and SPE are evaluated and 

ompared. In Brinker et al. (2019) , these comparisons were carried 

ut in regard to the task of performing melanoma versus nevus 

lassification, involving 157 dermatologists that span across 12 Ger- 

an university hospitals. The test dataset used in this experiment 

omprises 20 melanomas and 80 nevi randomly selected from the 

SIC dataset. Indirectly, this enables the comparison of the pro- 

osed approach with the results obtained from the 157 dermatol- 
11 
gists. A mean of 74 . 1% for SEN and 60% for SPE was achieved by

he dermatologists with dermoscopic images. This is inferior to the 

erformance reported in Table 5 for the proposed RGBZ approach, 

hich provides an additional 18 . 76 pp in SEN and 34 . 44 pp in SPE .

urthermore, in Marchetti et al. (2018) and Haenssle et al. (2018) , 

espectively, 8 and 58 dermatologists have also participated in a 

imilar study on another set of 100 images, obtaining 82% and 

6 . 6% for SEN , and 59% and 71 . 3% for SPE . Again, on average,

he proposed approach outperforms these classification results ob- 

ained by specialists. 

Although the results obtained in Table 5 cannot be directly 

ompared with the studies cited above, they establish a valuable 

eference for the expected classification performance made by spe- 

ialists in the same MvsN dataset. Therefore, it is possible to infer 

hat, on average, the proposed Morlet Scattering approach would 

utperform the human-based classification. 

.5. Comparison results with other sota methods 

In addition to comparisons made in the previous section, it is 

lso relevant to compare the proposed RGB classification pipeline 

ith other state-of-the-art methods. As such, the EfficientNets 

amily was selected ( Tan and Le, 2019 ). 

Following the same constraints used to attain the previous 

odels, EfficientNet-B0 to -B7 were trained (using Transfer Learn- 

ng) under the exact same conditions as performed for the other 

xperiments. This includes the 72 random rotations for the data 

ugmentation, the image resize, the use of back-propagation and 

radient Descent algorithms, the 0.001 learning rate, and the same 

mount of training epochs. All of which were repeated on a 10- 

old CV execution scheme. However, given the growth rate of the 

mount of trainable parameters from one version of the network 

o the next many combinations of batch size and EfficientNet ver- 

ions were not feasible, due to hardware limitations, namely GPU 

emory space (12GB). 

Results depicting the EfficientNets family executions are pre- 

ented in Table 6 . EfficientNets have more trainable parameters 

han our proposed model, which causes them to quickly overfit in 

he small training dataset. Most EfficientNet executions achieved 

95% training accuracy by the third epoch. In terms of test accu- 

acy, EfficientNets topped at 80 . 00% and 84 . 69% for the MvsN and

vsAll experiments, respectively. 
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From the table, the best accuracy EffcientNet results were 

chieved with batch sizes of 40 and 80 with EfficientNet-B2 in 

he MvsN experiment. In the MvsAll experiment, the best accuracy 

esults correspond to the configurations using batch sizes 40 and 

0 with EfficientNet-B1 and batch size 60 with EfficientNet-B2. In 

omparison, the results obtained with the Proposed (RGB) method, 

n Table 5 , achieve 84 . 00% and 86 . 73% , respectively for each exper-

ment. 

Using the BAC metric, which takes into account both the sensi- 

ivity and specificity, in particular to the MvsN experiment, none of 

he EfficientNet executions outperformed the Proposed (RGB) , must 

ess the Proposed (RGBZ) – also in Table 5 . Using this metric, the 

est EfficientNet execution (batch size 40 and EfficientNet-B2) is 

 . 96 pp lower than the Proposed (RGB) , and 16 . 27 pp lower than the 

roposed (RGBZ) . 

In particular to the MvsAll experiment, it is possible to see that 

ix of the executions outperform the Proposed (RGB) by correctly 

lassifying one extra melanoma to the detriment of some non- 

elanoma lesion images. In any of these cases, the BAC results in- 

rease was limited to a maximum of 1 . 78 pp, when checked against

o the Proposed (RGB) – 71 . 43% . In comparison, the use of depth

nformation (RGBZ) adds 11 . 91 pp on top of that. Meaning that the 

roposed pipeline always outperforms the EfficientNet models if 

upplied with depth information. 

. Conclusions and future work 

Automated melanoma discrimination is crucial to aid dermatol- 

gists improving their diagnostic accuracy. The pursuit for a solu- 

ion to automatically identify melanoma has been under study for 

ecades. Still, discrimination of melanoma, even with Deep Learn- 

ng methods, remains a challenging problem and current systems 

re yet to achieve satisfactory sensitivity performances. Rather 

han continuously attempting to improve algorithms by using the 

ame data as commonly used by dermatology experts, other di- 

ensions and modalities, as the skin lesion 3D surface, should be 

xplored. In order to go beyond current state-of-the-art results, 

ore reliable solutions might include merging 2D data together 

ith other dimensional aspects, such as surface, which has poten- 

ial to provide extended melanoma discrimination capabilities. 

Taking advantage of the recently introduced technology of the 

ight-field cameras, apart from the proposed pipeline, the main 

ontribution of this paper is the evaluation of the skins’ 3D surface 

ata as an alternative data modality when performing melanoma 

lassification, as well as its comparison to current state-of-the- 

rt results. This is done resorting to a recent dataset of multi- 

imensional imaging, which was specifically acquired for this goal. 

ecause the data originates from light-field imagery, every image- 

ixel data comprises both dimensions, enabling the creation of a 

roposed pipeline which operates in a same comparable setting. 

Despite the large class imbalance (often present in medical 

mage datasets) and limited data samples, the attained classifi- 

ation results appear to surpass the sensitivity and specificity to 

iscriminate melanomas from nevi, not only of the state-of-the- 

rt algorithms, but also of human specialists. In the proposed ap- 

roach pipeline ( RGBZ ), the melanoma discrimination against ne- 

us was achieved with 94 . 00% accuracy (comprising 92 . 86% sensi- 

ivity and 94 . 44% specificity) when combining 2D data with depth, 

 26 . 00 pp accuracy increase in relation to the state-of-the-art 

aseline method. 

In a similar setting, for the discrimination of melanomas against 

ll other available skin lesions, the proposed approach achieved 

9 . 80% accuracy (comprising 78 . 57% sensitivity and 91 . 67% speci-

city), an increase of 16 . 33 pp in relation to the state-of-the-art 

aseline method. 
12 
The experimental assessment allows to conclude that image 

lassification problems, including melanoma skin lesion classifica- 

ion, can be further improved by including 3D information, such as 

urface depth data. 
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