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ABSTRACT

Medical image classification through learning-based approaches has been increasingly used, namely in
the discrimination of melanoma. However, for skin lesion classification in general, such methods com-
monly rely on dermoscopic or other 2D-macro RGB images. This work proposes to exploit beyond con-
ventional 2D image characteristics, by considering a third dimension (depth) that characterises the skin
surface rugosity, which can be obtained from light-field images, such as those available in the SKINL2
dataset. To achieve this goal, a processing pipeline was deployed using a morlet scattering transform and
a CNN model, allowing to perform a comparison between using 2D information, only 3D information,
or both. Results show that discrimination between Melanoma and Nevus reaches an accuracy of 84.00,
74.00 or 94.00% when using only 2D, only 3D, or both, respectively. An increase of 14.29pp in sensitivity
and 8.33pp in specificity is achieved when expanding beyond conventional 2D information by also using
depth. When discriminating between Melanoma and all other types of lesions (a further imbalanced set-
ting), an increase of 28.57pp in sensitivity and decrease of 1.19pp in specificity is achieved for the same
test conditions. Overall the results of this work demonstrate significant improvements over conventional
approaches.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decades, skin cancer has maintained its posi-
tion at the top of the most common cancers all over the world
(Alliance, 2020). A skin lesion is any kind of skin patch that
presents different characteristics when compared to its surround-
ing area. There are many types of skin lesions, which can be
described according to their type, configuration, texture, colour,
localisation, and distribution, among other clinical signs. Gener-
ally, studies tend to focus on pigmented skin lesions, namely the
melanocytic lesions. This type of lesions is primarily denoted as
an abnormal proliferation of melanocytes at the basal epidermis
or upper dermis layers that may ultimately be classified as benign
or malignant (Cichorek et al.,, 2013). Its classification is typically
based on dermatologists visual inspection, with support of dermo-
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scopic imaging and the diagnosis by skin biopsy (Vestergaard et al.,
2008).

Around the world, dermatologic work force shortage and the
lack of pathology lab facilities set up the main reasons for the
lack of access to prompt detection of skin cancer, leading to
the increased morbidity and melanoma mortality (Feng et al.,
2018). Melanoma diagnosis rates have increased dramatically
over the past three decades, outpacing almost all other cancers
(Alliance, 2020). As of 2020, in the USA, the risk of developing
melanoma was of 1 in 38 (2.6%) for Whites, 1 in 1000 (0.1%) for
Blacks, and 1 in 167 (0.6%) for Hispanics (Society, 2020). A clas-
sical method to identify melanoma is with parameters known as
Asymmetry, Border, Colour, and Diameter - coined the “ABCD” rule
(Soyer et al.,, 2004). This method is based on the principle that
melanoma lesions are typically asymmetric, are larger than 6mm
in diameter, have irregular borders, and tend to have more than
one colour. Additionally, one-third of all melanomas are thought to
arise from pre-existing nevus (a similar lesion but of benign ori-
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gin) - thus detection and removal of such nevus is of utmost im-
portance in the prevention of melanoma (Pampena et al., 2017).
The process of lesion identification by specialists is labour inten-
sive, time costly, and error prone, therefore, it could be improved
with the use automated methods.

Fortunately, with the advent of Deep Learning (DL),
computer-aided diagnosis of cancers seems increasingly possi-
ble (Litjens et al., 2017). Indeed, automated DL techniques for skin
lesion classification may automate future screening, and enable
early detection of skin cancer (Adegun and Viriri, 2020). However,
as detailed in Yao et al. (2021), available skin lesion datasets
are usually very small in comparison to what is normally used
to train DL models. Therefore, many studies prefer to extract
hand-crafted features in order to reduce the model learning space
and, consequently, its natural capability to overfit (Yang et al.,
2018; Satheesha et al., 2017). Datasets used in skin lesion classi-
fication use the same type of information as dermatology experts
- i.e. dermoscopic imagery (2D/colour). The resulting classifica-
tion performances are yet to become sufficient to professionally
help dermatologists. Despite the limited composition of current
datasets, other type of imagery could also be used for this end.
This includes other data dimensions, which are fairly unexplored
as they are not suited for direct human observation, but can still
provide relevant information for computer systems. One of these
modalities is 3D imaging (e.g., stereo), which has already proven
to enhance skin lesion discrimination performances due to the
added depth information (McDonagh et al., 2008; Smith et al.,
2011).

In general, image classification requires the use of representa-
tions that reduce non-informative intra-class variability, but must
preserve discriminative information across classes. In DL, deep
neural networks (DNN) build hierarchical invariant representations
learned by applying linear and non-linear operators in succession
during training. These are learned in a dataset-dependent basis,
and most image classification problems have generic learnable rep-
resentations that are common across fields. When multiple in-
stances of the same element are present in a dataset, translations,
rotations, and scaling are common sources of variability for most
images. Changes in the object view point and perspective projec-
tions of three dimensional surfaces correlate many of the dataset
samples. With the use of Wavelet Scattering (WS) (Bruna and Mal-
lat, 2013) it is possible to build neural networks invariant to said
translations and rotations (Sifre and Mallat, 2014). These can be
implemented as a convolutional neural network (CNN), with suc-
cessive spatial wavelet convolutions at each layer.

This paper explores the use of depth data from skin lesions
combined with colour information by resorting to light-field im-
agery and semi-automated segmentation masks. Based on a pub-
licly available dataset named SKINL2 (Faria et al., 2019a; 2019b),
a DL-based classifier is developed. The DL model relies on Mor-
let Wavelet-based features that greatly reduce the dimensionality
problem, by performing Wavelet Scattering Transforms on the in-
put data (Andén and Mallat, 2014; Bruna and Mallat, 2013; Sifre
and Mallat, 2013). These features are used as alternative to a
deeper model by providing unique features, invariant to trans-
lation, rotation, scale and frequency shifting - a transformation
bearing similarities to Gabor filters in initial CNN convolutions
(Springenberg et al., 2015; Yosinski et al., 2015). The experimen-
tal results show the contribution of these new depth features in
comparison to the classification of 2D colour images. Additionally,
it is also assessed the extent to which depth information can im-
prove current state-of-the-art (SotA) skin lesion classification sys-
tems that only resort to the traditional 2D imagery.

The main contribution of this paper is the exploitation of 3D
surface skin data as an alternative data modality for melanoma
discrimination. Additionally, the Morlet Wavelet-based features are
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also introduced for this type of data and compared to the current
state-of-the-art results. Because this data is originated from light-
field imagery, a comparison to typical colour based classification is
possible, as the used dataset provides both colour image and 3D
information for every image-pixel data.

The remainder of the paper is organised as follows:
Section 2 presents a brief literature review on relevant topics,
including previous works that led to the proposed pipeline, as
well as details about existing datasets, and the concept of wavelet
scattering. Section 3 describes the proposed approach pipeline, in-
cluding relevant details about the experiment parameters, segmen-
tation, data pre-processing, augmentation, normalisation, model
feature extraction, and the DL model. Finally, Section 4 presents
and discusses the achieved results while Section 5 highlights the
conclusions.

2. Background

Image recognition and classification using Machine Learning
(ML) has become a major topic in a wide range of research fields,
specially with DL. For instance, in the field of skin lesion clas-
sification, CNNs have produced promising results (Gonzalez-Diaz,
2018; Tang et al, 2020). But recently, research based on data-
driven models have reported the highest performance measure-
ments ever published across multiple test datasets (Hosny et al.,
2019). The use of these pre-trained models is typically accompa-
nied by a Transfer Learning (TL) method (Shin et al., 2016; Barata
et al., 2018), which can be additionally aided by manually extracted
features (e.g., as in Hagerty et al. (2019)).

In order to properly address various concepts or areas necessary
to support this work, the remainder of this section is structured
into four subsections, namely: Deep Learning (DL), segmentation,
datasets, and Wavelet Scattering (WS).

2.1. Deep learning

Practical implementation of automatic skin cancer classification
has significantly improved with deep CNN-based models - DCNN
- (Gessert et al., 2019; Xie et al., 2020; Yuan et al., 2017; Esteva
et al,, 2017; Liu et al.,, 2020). However, despite the promising re-
search progresses, further improvement in diagnostic accuracy is
still hindered by several factors. In particular, skin lesion dataset
images usually exhibit low contrast, fuzzy borders and artefacts
such as hair, veins, and ruler marks, which hinder lesion classifica-
tion. As a consequence, large sets of images are necessary for ad-
equately training DCNN models to fit the unknown data features,
as exemplified by the use of millions of images in the most used
image classification datasets, ImageNet (Deng et al., 2009). Bene-
fiting from an initial training with this large-scale image classifica-
tion dataset, previous DCNN models have achieved significant clas-
sification results, comparable to those of professional dermatolo-
gists diagnostics (Esteva et al., 2017; Liu et al., 2020). Additionally,
almost all the publicly accessible skin lesion datasets suffer from
data imbalance. Samples among different lesion categories have
uneven distributions because different types of skin lesions have
different occurring rates and image acquisition accessibility. Fur-
thermore, many images have high intra- or low inter-class varia-
tions (Yu et al., 2016; Yang et al., 2019). These constrains contribute
to an imbalanced dataset and poor metric performance, especially
for rare (e.g., melanoma) and similar (e.g., melanoma and nevus)
lesion types.

On large-scale image classification tasks, improving the DCNN
structure from an initial AlexNet (Krizhevsky et al., 2012) to the
recent RegNet (Radosavovic et al., 2020) or increasing the model
parameter capacity (Radosavovic et al., 2020; Tan and Le, 2019; He
et al., 2016) enables better performances. However, in small-scale
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image datasets it is very difficult to increase the performance, as
increasing the number of parameters may induce the model to
transition from an under-fitting space to space where the over-
fitting probability is hi (Belkin et al., 2018). In some works de-
scribed in the literature, DCNNs are selected without taking into
account the new dataset size and the new intra- or inter-class vari-
ations - avoiding such issues by using mechanisms that mitigate
the over-fitting problem (Esteva et al., 2017; Liu et al., 2020; Yu
et al., 2018; Han et al., 2018; Brinker et al., 2019; Hosny et al.,
2019). Some of these mechanisms are TL (Hosny et al., 2019), data
augmentation (Bisla et al.,, 2019; Hosny et al., 2019), and multi-
target weighted loss functions (Fernando and Tsokos, 2021; Hosny
et al., 2019). Alternatively, other data and model adjustments that
have been learned from large-scale image classification (such as
data normalisation into certain ranges or residual connections be-
tween distant layers) can be used (Radosavovic et al.,, 2020; He
et al, 2019; Wu and He, 2018; loffe and Szegedy, 2015; Mishkin
et al., 2017).

A combination of  such mechanisms is used
in Hosny et al. (2019) where the classification of segmented
colour skin lesion images of three datasets is performed using TL
with a pre-trained AlexNet CNN model. In order to increase the
number of dataset samples and lower the model overfit proba-
bility, augmentation based on image rotation is performed. Data
normalisation is also employed as originally applied for the previ-
ously trained ImageNet data (maintaining the same colour feature
space). As commonly used in TL methods, the model classifica-
tion layer is replaced by an appropriate softmax layer for either
melanoma and nevus (binary) or melanoma, seborrheic keratosis,
and nevus (ternary) discrimination. After fine-tuning the model
weights on each dataset, and performing augmentation in both
train and test sets, the reported system accuracy performance was
measured as 96.86%, 97.70%, and 95.91% for the used MED-NODE,
Derm-IS and Derm-Quest, and ISIC datasets, respectively. Without
augmentation, the recorded performance was 88.24%, 91.18%, and
87.31% for the same datasets.

Additional information about DNN skin lesion applications us-
ing this datasets can be found in Senan and Jadhav (2019).

2.2. Segmentation

In DNN, the majority of works require some form of prior lesion
segmentation or location identification (Hosny et al., 2019; Hagerty
et al., 2019; Gonzalez-Diaz, 2018; Tang et al., 2020; Li et al., 2018;
Raviet al., 2016; Barata et al., 2018; Navarro et al., 2018; Khan et al.,
2019). Surrounding healthy skin information (or image acquisition
artefacts) may originate outlier features or expand the dimension
of the hyperspace where the parameter search is performed by
DL algorithms (e.g., with CNN), urging for a preprocessing step
in order to avoiding undesirable outcomes. One example of such
method is described in Navarro et al. (2018), where local features
guide image segmentation into super-pixels, which are iteratively
merged into regions, to form two classes of regions (lesion and
non-lesion), while considering a spatial continuity constraint on
the super-pixels colour.

2.3. Datasets

To the best of the authors’ knowledge, all literature works
that experiment on publicly available datasets of skin lesions
are restricted to 2D coloured-information, which are either
of dermoscopic or macro-photographic images. Significant re-
sults have already been achieved using these single modality
datasets (Pathan et al.,, 2018), still, the low granularity of the infor-
mation might pose limitations to the classification problem, as only
planar lesion-information can be retrieved from such data. Other
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modalities, such as stereoscopic technology (McDonagh et al.,
2008; Smith et al., 2011), have already shown alternatives to over-
come this limitation by efficiently identifying the type of skin le-
sion when a third dimension is present. Despite the scarce litera-
ture on 3D surface of melanoma or related skin lesions, there are
indications that depth provides useful information. For this reason,
the study in Satheesha et al. (2017) tries to use artificially gener-
ated 3D information to enhance the existing 2D dataset. In order to
fill the void of 3D skin lesion data, a recent dataset named Skin Le-
sion Light-fields (SKINL2) was made public to enable research over
skin lesions’ 3D surface information (Faria et al., 2019b). Note that
this dataset is even smaller than other available 2D datasets like
the one used in Yao et al. (2021). At the time of writing, to the
authors knowledge, there are no works published by other authors
resorting to this recent dataset.

2.4. Wavelet scattering

Also relevant for this work is the concept of Scattering Trans-
form and its early usage in CNN architectures as alternative to ini-
tial convolution layers since it provides unique features invariant
to translation, rotation, scale, and frequency shifting - allowing the
creation of lesser deep models.

In Mallat (2012), the concept of Lipschitz-continuous
translation- and rotation-invariant operators for wavelets is
presented, where differentiable manifolds are smoothly mapped
with invertible functions - diffeomorphism. Lipschitz continuity is
the central condition to guarantee the existence and uniqueness of
a solution to an optimisation problem. This condition is discarded
by CNNs when matching patterns during the training process,
allowing similar patterns to exist (even if only initially) and
match identical solutions (Bruna and Mallat, 2013). This wavelet-
propagating operator is a path-ordered product of nonlinear and
not-comparable operators, each one computing the modulus of
a wavelet transform. The scattering transform window is gener-
ated by a Lipschitz-continuous local integration, which converges
to a translation-invariant wavelet scattering transform as the
window size increases. The scattering coefficients also provide
representations of stationary processes (Mallat, 2012; Waldspurger,
2017).

The Wavelet Scattering (WS) framework is based on this core
concept. Which is used as convolution layers for NNs. The convolu-
tions obtained from WS - whose filters are fixed to be wavelet and
low-pass averaging filters coupled with modulus non-linearities -
compute translation invariant image representations, which are in-
variant to deformations while preserving high frequency informa-
tion for classification. While this is true, it is important to note that
features acquired with such framework are subject to a level of os-
cillation, however small. In Bruna and Mallat (2013), the mathe-
matical analysis of wavelet scattering networks explain important
properties of DCNN classification, presenting results for handwrit-
ten digits and texture discrimination.

Some degree of invariance to translation and diffeomorphism is
necessary for many classification or regression tasks. In DL, using
CNNs for example, the use of the WS framework can create an ini-
tial model which includes one or more layers responsible for trans-
forming the non-linear input into representations invariant to geo-
metric transformations (translations, rotation, scale and frequency
shifting), while preserving a high degree of discriminability (Bruna
and Mallat, 2013; Waldspurger, 2015; Sifre and Mallat, 2013). These
transformations have two main advantages. First, they perform di-
mensionality reduction to the data, while allowing a structured
feature representation to be captured for a given task. Second, the
geometric-invariant representation that is mapped into a smaller
dimension space allows for simpler model building, especially in
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the presence of small training sets (Adel et al, 2017; Bruna and
Mallat, 2013; Chudacek et al., 2013).

Across several fields, replacement or augmentation of learn-
able convolutions is being performed with this WS framework. In
short, the scattering transform is defined as a complex-valued CNN
whose filters are fixed to be wavelets and the non-linearity is a
complex modulus. Because wavelet transform is contractive, as is
the complex modulus, so is the whole network, resulting in a re-
duction of variance and added stability relative to additive noise.
Also, since each layer is a wavelet transform that separates the
scales of the incoming signal, invariability to deformation of the
original signal is also attained. All these aforementioned properties
enable the representation of structured signals such as natural im-
ages, textures, audio recordings, biomedical signals, and molecular
density functions, among others.

3. Proposed approach - Pipeline

As pointed out before, the aim of this work is to improve the
accuracy of melanoma discrimination of conventional methods that
only use colour (RGB) information, by including an additional di-
mension (depth) that characterises the skin surface rugosity. To
achieve this goal, a pre-processing and classification pipeline is
proposed to enable the use of RGB and corresponding depth (Z),
which are referred to as image components along with a segmen-
tation mask to be computed at the first stage of the pipeline. The
influence of depth information in melanoma discrimination is also
evaluated when both types of data are simultaneous used (i.e.,
RGBZ), in comparison with the use of RGB information only. The
classification pipeline, in particular, comprises two main stages: a
Morlet Scattering Transform, which mimics initial DL convolutions
by computing initial features with high discrimination capacity and
enabling the use of a shallower model when compared to other DL
models like in Hosny et al. (2019) and even Tan and Le (2019); fol-
lowed by the actual DL model, comprised of learnable convolutions
and a softmax output.

Overall, the proposed pipeline has three types of configurations
in this study: target classes; target dimensions; and model exten-
sions. The target classes configuration, which will be further de-
tailed in Section 4, sets the classification spectrum as either: bi-
nary discrimination of melanoma versus nevus samples; or binary
discrimination of melanoma versus all other skin lesion types (in-
cluding nevus). The target dimensions configuration sets the data
dimensions (e.g. image size after resize) at a given classification
study (Section 3.3). Finally, the model extensions defines a set of
training configurations, which provide extended results to the tar-
get dimensions and help the interpretation of the model capa-
bilities (Section 3.5 and Section 3.6). Both target dimensions and
model extensions are defined in this section and later exploited
in Section 4.2 to define the final configuration of the proposed
method for the selected dataset classification targets.

The processing pipeline comprises six stages, as depicted in
Fig. 1. Given a RGBZ dataset, where each pixel consists in colour
(RGB) and depth (Z) information, a lesion segmentation mask is
firstly generated, as described in Section 3.1. After extraction of the
lesion segmentation mask, a given dataset sample is comprised of
an RGB image, its depth map Z, and the segmentation mask, i.e. a
total of five components at the pixel level (RGBZ plus segmentation
mask). This dataset undergoes a process of data augmentation by
means of random rotations in order to reduce the overfitting prob-
ability, as described in Section 3.2. Using the segmentation mask,
the minimal lesion-bounding-box is determined and the pixels be-
yond such box are removed from the data - effectively making the
new data a rectangular crop of the segmented lesion area. Con-
currently, pixel values belonging to healthy skin in this crop area
are set to zero. At this point, as described in Section 3.3, the pa-
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Fig. 1. Proposed pipeline: a given light-field (RGBZ) dataset 1) ask for user in-
put and perform segmentation using Lazy Snapping empowered by SLIC; 2) apply
augmentation by a random rotation to both RGBZ data and segmentation; 3) pre-
process data by cropping around segmentation lesion area, hide skin information,
select which image components to maintain, and resize the cropped image to the
target experiment size; 4) apply normalisation by transforming the cropped image
values into a range between [-2, 2]; 5) create the scattering convolutions and ex-
tract a set of scattering coefficients; and finally 6) apply a classification model that
sequentially transforms said set into a larger one, which is then reduced through
pooling for a final fully connected layer to provide the softmax discrimination la-
bel.

rameters defined by target dimensions configuration define which
image components to maintain and to what shape resize the data
sample. Then, data is normalised into a defined range (Section 3.4)
to feed the Morlet Scattering Transform (Section 3.5), which ex-
tracts features to fuel the DL model (Section 3.6). This model in-
creasingly expands the data sample analysis, before feeding the fi-
nal fully connected layer that provides the softmax discriminative
label. Detailed information about each stage is provided in the fol-
lowing six subsections.
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Fig. 2. Lesion segmentation method: given a dataset coloured central-view im-
age (top-left); the image pixels are grouped through super-pixel over-segmentation
(top-right); then, visually, some pixels regarding the lesion (in green) and skin re-
gion (in red) are marked to help guide the segmentation process (bottom-left);
lastly, a skin lesion segmentation mask is generated (bottom-right). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

3.1. Segmentation

The segmentation process is based on the algorithm described
in Li et al. (2004), dubbed Lazy Snapping, where the method
to group similar pixels is substituted by the algorithm proposed
by Achanta et al. (2012), which has shown to perform well in
coloured skin lesions (Navarro et al., 2018). Given the RGB im-
age data (Fig. 2, top-left), pixels are first grouped into super-pixels
(Fig. 2, top-right) using the Simple Linear Iterative Clustering (SLIC)
method (Achanta et al., 2012). This pre-processing step reduces the
dimension of the problem to fewer image elements (super-pixels)
for the subsequent Lazy Snapping algorithm. In this work, the com-
pactness of the SLIC method is set to 10 and its clustering phase is
performed for 10 iterations.

The RGB super-pixels are used to construct a graph in the Lazy
Snapping algorithm, where each super-pixel is a node that con-
nects to other related super-pixels by weighted edges. The value of
the edge weights depend directly on the correlation probability be-
tween adjacent nodes. Then, by adaptively cutting edges of smaller
weights, the algorithm identifies the object region by maximis-
ing the colour similarity within the object. In order to guide the
graph-cut algorithm, the user provides information (Fig. 2, bottom-
left) about pixels belonging to the lesion (foreground, green points
in the figure) and pixels belonging to the non-lesion skin (back-
ground, red points in the figure). Given the user input, the separa-
tion between foreground object and background elements is gen-
erated by the Lazy Snapping algorithm as a segmentation mask
(Fig. 2, bottom-right).

3.2. Augmentation

Classification algorithms, as is the case of DCNN, usually require
large amounts of data to yield proper performance (class separa-
tion) and convergence (feature discovery). The dataset used in this
work has a small number of images, therefore it is necessary to
expand it by augmenting the existing images. To this aim, all in-
put training image samples are randomly rotated from 0 to 360
degrees prior to be used in the training phase. Additionally, each
epoch comprises 72 passes through the training dataset, which al-
lows each image to be analysed at 72 angles before a new epoch
begins with another set of 72 random rotations. This is a simi-
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lar approach to that implemented in Hosny et al. (2019) but in
this case the rotation-degree is not restricted and augmentation
is not used during the test phase. The selection of this as our
only augmentation method was made to fairly compare our results
with those obtained with the selected baseline method (detailed in
Section 4.4).

At this stage, each input training image (i.e., dataset sample)
comprises five components (C): an RGB image, the corresponding
depth data, and the lesion segmentation mask. All image channels
are geometrically transformed by the same rotation, keeping the
information aligned, such that the segmentation mask still pro-
vides the correct lesion location in both the RGB and depth infor-
mation.

3.3. Data pre-Processing

Given an RGBZ dataset sample and its lesion segmentation
mask, the pre-processing stage sets the target dimensions con-
figuration parameters for the experimental setup. There are two
parameterisations: i) selection of the image components; and ii)
model input image size. Besides these options, the image data en-
tering the pre-processing stage is cropped to the bounding lim-
its defined by the lesion segmentation mask. Concurrently, the
healthy skin region in this cropped area is removed by setting the
corresponding pixel values to 0 (zero). The removal of the sur-
rounding healthy skin region is intended to focus the model on the
lesion, not allowing speculations about possible patterns or fea-
tures of regions outside the lesion area.

In regard to the image components, the pipeline can operate in
different modes by exploiting either only colour (RGB) data, only
depth (Z) data, or both colour and depth (RGBZ) data. Only the
selected components are used by the proposed algorithm. The se-
lection of such different operational modes, has obvious impact on
the learning process and consequently on the model, allowing to
compare the performance between models obtained by learning
with different image components.

In regard to the image size parameter, three possible resizes are
defined: to 32 x 32, to 64 x 64, or to 128 x 128 pixels. This image
resize is necessary because the crop of the lesion region generates
different area sizes for different images, creating conflicts of input
data sizes for the model along the proposed pipeline. Additionally,
considering that the original image size may be too large, depend-
ing on the number of images available in the dataset, the model
resources may be inadequate, for instance, accelerating the model
overfit. Therefore, the last step of the pre-processing stage is to
resize the existing images to a fixed (smaller) size using bilinear
interpolation.

3.4. Normalisation

Given the image components entering in this stage, the respec-
tive data is normalised to improve the model convergence. This is
a usual procedure due to the fact that CNNs, or NN in general, per-
form better if the input data is constrained to certain ranges.

For the colour components, the normalisation transforms the
data to the approximate range [-2,2] as in other DCNN appli-
cations (namely Hosny et al. (2019)). This is, as traditionally ap-
plied in ImageNet, normalisation is carried out by subtracting
the values of (0.485, 0.456, 0.406) and dividing by the values of
(0.229, 0.224, 0.225) for the R, G, and B components, respectively,
so that the value range is comprised between [-2,2]. For the
depth component, the same operation is performed by subtract-
ing 6.26 and dividing 3.03, in order to constrain it to the range of
[—2, 2]. This normalisation stage operates on either colour, depth
or both components according to the selection made in the previ-
ous data pre-processing stage.
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3.5. Morlet scattering

At this stage, a dataset sample is represented by either 3, 1, or
4 channels (C) - only RGB, only Z, or RGBZ, respectively. Prior to
be processed by the classification model (Section 3.6), unique fea-
tures invariant to rotation, translation, and scale are extracted us-
ing a WS framework with a Morlet wavelet as the mother wavelet
(Sifre and Mallat, 2013). In addition to the extraction of unique fea-
tures, this process also reduces the data volume and, consequently,
further prevents model overfitting. This extraction of features can
be performed either by calculating only first-order coefficients or
by extending to second-order calculations, which are considered as
part of the model extensions parameters.

The mother wavelet (¥ (t)) used in this work is the Mor-
let wavelet and, to speed up the process, the convolutions are
performed in the Fourier domain. The corresponding family of
wavelets is generated by dilation and translation from the mother
wavelet as in Eq. 1, where a is a scale factor and b is the time
index, while the factor |a|1/2 is used to ensure energy preserva-
tion. In this work, the input data is represented as 2D matrices
of N x N values, where N can only assume the values 32, 64, or
128. Let x[n] be any signal on this N x N grid, as x[n, m]. The pe-
riodic convolution with another signal y[n] is denoted by x ® y[n].
The scattering transform uses a wavelet filter bank for each order
greater than zero, that is WA(:)[D] for the first-order and wii)[n] for

second-order respectively, where A; and A, are frequency indices
in the sets A; and A,. The low-pass filters are represented by
¢;[n], specifying an averaging log-scaling filter of 2] (which nearly
linearises the variations of scattering coefficients), where | is a reg-
ulator variable. Input data partitioning is also computed in relation
to J as non-overlapping patches of size 2/, thus producing N/2/ par-
titions. This logarithmic non-linearity is first applied to invariant
scattering coefficients to linearise their power law behaviour across
scales. This is similar to the normalisation strategies used with
bag of words (Lazebnik et al., 2005) and deep NNs (LeCun et al.,
2010). Together with a non-linear function p(t), the filters com-
prise the scattering transform. The non-linear function employed
in this work is the complex modulus p(t) = |t|, as in Andén and
Mallat (2014); Bruna and Mallat (2013).

Yan(6) = |a|”2w(tab> (1)

The zeroth-order scattering coefficient Sy(x[n]) is the local av-
erage as given by Eq. 2. The first-order scattering coefficients are
obtained from convolution of x[n] with the first-order wavelet fil-
ter bank, as defined in Eq. 3. These are the least computation-
ally expensive coefficients to be used in the classification process.
Second-order coefficients are obtained as an extension of the first-
order ones, as defined in Eq. 4, where further data structures are
captured by decomposing the p(-) results using the second filter
bank 1//)(3. Note that this is only performed for a subset A, , C A,
defined only for the elements of A, corresponding to elements of
A, since results from the first-order p represent low-frequencies.
The Morlet filters are similar to normalised zero-mean Gabor func-
tions and are, therefore, computed as such for simplicity. To reduce
computational load, data obtained from p(t) is down-sampled as
in Sifre and Mallat (2014).

So(x[n]) = (x® ¢y)[n] (2)

Sidn ] = (p(x@ ¥l @ d)nl.  AreA, (3)

S;(x[m, A, A2]) = (P((P((X ® Yy )[n]) ® wfz)[n]) ® ¢])[n],
AEAT, AaeNy (A1) (4)
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In this work, the J regulariser is always set to 2 and a rota-
tion parameter r, which defines how many filter rotations are per-
formed to induce rotation-invariance, is set to 8. Since this rotation
parameter is limited in number, some sensitivity to rotation still
exists, thus different rotated images produce slightly different fea-
tures. Assuming the already mentioned N x N pixel-grid, the Scat-
tering Transform of the WS framework with a scale J and r an-
gles will generate a 3D set of features Vs, as expressed in Eq. 5, for
methods configured to use only first-order coefficients, or as ex-
pressed in Eq. 6, for methods including second-order coefficients.
An input dataset image generates a one-fourth-sized grid N of ei-
ther 8 x 8, 16 x 16, or 32 x 32, with either K =17 or K = 81 fea-
ture values in each cell, depending if they are configured to use
only first-order or both first-order and second-order coefficients.
For example, if the experiment is configured to run RGB com-
ponents (i.e. three pixel-grids, C = 3) with first-order coefficients,
then three sets are generated, each with K = 17 features per cell -
a total of three 17 x N feature sets per dataset image.

N N
Vsik=1+1], Vox = 5 Vs,y = 5 (5)
r2J(J -1 N N
V521(=1+T]+%7V52x:?,VS;y:j (6)

Prior to the next stage, feature sets are stacked along the Vg
dimension to generate a single feature set V of size KC x N. This
means, for example, if three blocks are produced (as occurs when
processing RGB data), then the new set V will maintain the sec-
ond and third dimensions, while the first dimension grows to three
times the size — assembling a V of 3K x N features. Stacking is per-
formed on the first dimension (K), in opposition to other dimen-
sions of size N, so that features regarding the same image loca-
tion but of different components remain grouped together. That is,
when working with the image components, vectors of K features
that are extracted from each individual component (in a particu-
lar region) are stacked together in order to simplify the visualisa-
tion of the feature-information by the subsequent CNN classifica-
tion model convolutions.

3.6. Classification

As depicted in Fig. 3, given a set of features V, the classification
is performed by a CNN model that, apart from the first convolu-
tions, is a fixed-size network for the whole experiment. The model
comprises three main parts: i) a fitting part, where input features
are convolved with a kernel designed to fit the data to the fixed
network dimensions; ii) an expanding part, where two repeating
blocks process and expand the data; and iii) a classification part,
where a fully connected layer provides the classification output.

For all convolutions, the value of the stride is 1 pixel, the ker-
nel size is 3 x 3 unless stated otherwise, and the value of the
bias is set to zero. In all batch-normalisation layers (loffe and
Szegedy, 2015), the running estimates parameter is set to 0.1 and
possess learnable affine-transformation parameters, unless stated
otherwise. For the remainder of this section, every convolution
layer is followed by a batch-normalisation and a Relu activation
function, unless stated otherwise.

The fitting part of the network (i) comprises batch-
normalisation and a convolution layer of 32 kernels. In this first
convolution layer, the feature-set V, which has an experiment-
variable size KC x N, is transformed to a fixed size of 32 x A.
The first part of the network has K x C x 288 + 64 trainable
parameters. Additionally, the initial batch-normalisation has no
learnable affine-transformation parameters and only exists to
further regularise the input data range for the model.

The expanding part of the network (ii) is a structure that re-
peats twice, each comprising four working blocks (WB) with a
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Fig. 3. Model pipeline. Receiving a feature-set V of scattering coefficients, train a
deep learning model comprised of three main parts: (i) a initial data fitting, (ii)
a main processing part with convolutions that expand a given data volume, and
finally (iii) a fully connected layer.

residual connection. The only difference from one structure to the
next is the target number of kernels in every convolutional layer,
which are 64 and 128 for the first and second structure, respec-
tively. Each of the four mentioned working blocks comprises two
convolutions. The first working block of each structure has an ad-
ditional third convolution, which receives the same data as the
first convolution (performing the same operations). However, this
block’s kernels are of size 1 x 1 and there is no Relu at the end.
The output of this third convolution is added to the second convo-
lution batch-normalisation output - before Relu - as residual in-
formation. These two-parts of the network structure have 279,680
and 1,116,416 trainable parameters, respectively.

The classification part of the network (iii) performs a binary
softmax classification with the result of a biased fully connected
layer of 512 inputs to two neurons. This layer is adopted, with the
traditional sigmoid activations, as it is an universal approximator
(Csaji, 2001) for classification problems. Since the set V entering
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the network has size KC x N, at this point, after all convolutions,
it will have 128 x N. This means that it will have a variable size
in the second and third dimensions - represented by N. In order
to encapsulate this information into a fixed size, so that models
compiled for different input sizes remain comparable, an average
pooling layer is added before the fully connected layer to adapt-
ably reduce the data volume into a fixed sized 128 x 2 x 2 volume
(i.e. the referred 512 input values of the fully connected layer). This
last part of the network has 1,026 trainable parameters.

The fully described network is trained using Stochastic Gradi-
ent Descent with Nesterov momentum (Sutskever et al., 2013). The
learning rate is fixed at 0.001 and the momentum at 0.9. Addition-
ally, weight decay (L2 penalisation) is also performed at 0.0005, in
order to exponentially decay weights to zero, limiting the number
of free parameters in the model and avoiding rapid over-fitting.

In this work, instead of having the learning rate influencing
the new momentum velocity by scaling the gradients, the veloc-
ity does not depend on the learning rate. Rather, the learning rate
is used when updating the model parameters, scaling the whole
velocity equation result (meaning that it also scales the previous
momentum-ed velocity). This was performed to smooth the model
learning, as to further challenge early overfitting.

Finally, to promote balanced classification-error corrections in
the network during training, the model softmax-cross-entropy loss
function is weighted (via cost matrix) for a given class, as the num-
ber of training samples in the largest class divided by the given
class number of training samples. Effectively, this makes one error
in the smaller class more significant than one error in the larger
class, implicitly balancing the dataset.

4. Experimental assessment

The experimental results presented in this section are expressed
in terms of percentage of classification accuracy (ACC), sensitivity
(SEN), and specificity (SPE), inline with most of the cited works,
where SEN represents the successful melanoma identification rate
and SPE the successful identification of the other class. Since this is
an unbalanced problem, the balanced-accuracy (BAC) is introduced
as defined in Hu et al. (2019), which corresponds to the average
value between sensitivity and specificity, as shown in Eq. (7).
BAC — SEN + SPE 7)

2

These results encompass two main classification experiments
(target classes), both executed applying 10-fold Cross Validation
(CV). The first experiment, named “MvsN”, refers to melanoma
classification against nevus samples while the second experiment,
named “MvsAll”, performs the classification of melanoma versus
all other skin lesion types (including nevus). Note that there is
no contamination between folds: original images selected for a
given training fold are augmented by rotation producing new im-
ages used within the same fold; models are reset between CV it-
erations. No image augmentation is performed in the testing step.
Additionally, because CV is used, the previously mentioned met-
rics can be generated in two ways: at a “Dataset Level”, by merging
all fold-results and calculating the metrics once; or by perform-
ing a “Cross-Validation Average” of the metric-results attained in
each fold. By default, results are presented at a Dataset Level, un-
less stated otherwise. This is due to the fact that, given the size of
the dataset, CV folds can have, for example, only one testing image
for the melanoma class. As a result, the metric values become ei-
ther 0% or 100%. Therefore, average values and associated standard
deviations are not good performance indicators.

The learning process was run for 7 epochs in all executions,
aiming for approximately 500 dataset passes through the model,
as each epoch comprises 72 random rotation of each sample. In
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Table 1
10-fold Cross Validation Dataset Distribution.

Folds (train | test)

Dataset  Label

1to4 5to 6 7 to 10
MvsN  Melanoma 13x72|1 13x72|1 12x72]2
Nevus 33x72|3 32x72|4 32x72|4
MvsAll  Melanoma 13 x72 |1 13x72]1 12x72]2
All 76x72]18 76x72|8 75x72|9

the model extensions configuration, the following seven batch sizes
were used for the model: 5, 10, 15, 20, 40, 60 and 80.

The remainder of this section is organized as follows:
Section 4.1 describes the dataset and the target classes partition-
ing used in the experimental evaluation. Section 4.2 describes the
parametrisation selection of the final model and Section 4.3 shows
the effects of excluding image segmentation from the pipeline.
Then, results are discussed and compared to current state-of-the-
art baseline in Section 4.4 and to other state-of-the-art models in
Section 4.5.

4.1. Dataset

The proposed pipeline was evaluated using the publicly avail-
able SKINL2 dataset (Faria et al., 2019a). The dataset contains light-
field imagery of skin lesions, captured with a Raytrix R42 camera
at a hospital facility (Centro Hospitalar de Leiria, Portugal) from pa-
tients previously screened by a physician during dermatology clini-
cal appointments. All volunteers received an explanation about the
procedure and purpose of the study, and also signed an informed
consent form. A health ethics committee evaluated and approved
the procedures related to the image acquisition, storage, and pub-
lication. Each light-field image comprises 3858 x 2682 pixels per
RGBZ component.

In this work, the second (Faria et al., 2019b) and third ver-
sions of this dataset were used. Both versions of the dataset can
be found in the same online repository'. Both versions provide
more detailed images, due to their increase in lens magnification
of ~ 30% in comparison to its first version. At the time of publica-
tion of this paper, the third version is still under development and
the available data was used as an extension of the second version.
In total, 98 images were used (70 from the second dataset and 28
from the third). The combined dataset comprises 14 melanomas,
36 nevi, and 48 other lesion types (16 angiomas, 6 basal cell carci-
nomas, 1 dermatofibroma, 24 seborrheic keratoses, and 1 verruca).
Sample RGB and Z image data for different dataset labels (and pro-
duced segmentation mask) are presented in Fig. 4.

Therefore, experiment MvsN opposes 14 melanoma samples
against 36 nevus samples, while experiment MvsAll confront 14
melanoma samples against all other 84 non-melanoma samples.
For the readers convenience, the number of images used in each
fold of the two experiments is depicted in Table 1. Every training
set is augmented by x72, while testing is not.

4.2. Parameter selection

This section discusses the following three parameter configura-
tions: the coefficients order (i.e. either first or second order coeffi-
cients), the target size of resized images and the model batch size.

To understand the influence of the batch size on the data com-
ponents, the results for the more balanced MvsN dataset are first
analysed. Since these experiments contain different amounts of
data samples - 50 for MvsN and 98 for MvsAll - it is expected

1 Online repository: http://on.ipleiria.pt/plenoisla
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Fig. 4. Sample SKINL2 dataset images. The left column displays RGB images, the
middle column shows Z values in grayscale, and the right column contains gen-
erated segmentation mask images. From top to bottom, samples show: Angioma,
Carcinoma, Dermatofibroma, Melanoma, Nevus, and Seborrheic Keratosis.
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Fig. 5. Box-plot of BAC (with its 12 data points) for the different batch sizes in
MvsN across the remaining parametrisation options.

that the preferred batch size will also differ in a similar ratio. Re-
sorting to a box and whisker plot, Fig. 5 depicts the average BAC
metric-value for the different batch sizes in MvsN independently of
the image size, the coefficient order, and the use of either RGB or
depth data. This figure also displays the 12 data points generated
to build each box plot (a combinatorial execution of two coefficient
orders x three images sizes x use of either RGB or depth). An in-
spection of the results allow us to select the batch size of 40 as the
best configuration, due to its average BAC performance of 75.30%.
A similar analysis is performed for the MvsAll experiment, as
depicted in Fig. 6. In this figure, box-plot data-dispersion appears
smaller than in Fig. 5, most likely due to the increase in the dataset
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Fig. 6. Box-plot of BAC (with its 12 data points) for the different batch sizes in
MusAll across the remaining parametrisation options.

Table 2

Average BAC for each image resize and for 1st and 2nd
order coefficients, over the possible data components -
MvsN experiment.

Image Data Components

Order Size

RGB z

st 32x32 78.08+£2.57  64.29+5.76
64 x 64 81.25+6.41  68.30+1.76
128 x 128 79.32+7.03  65.67+1.92
average 79.55 66.09

2nd 32x32 77.48+3.11 58.28+4.71
64 x 64 82.89+2.70  67.01+3.74
128 x 128  76.36+4.72  59.87+5.56
average 78.24 61.72

size. Starting from the left, MvsAll results appear initially similar to
MvsN: a compact spread at batch size 20; an average improvement
peaking at 40 with some data points polling down the average per-
formance; then starting to lose performance at batch size 60. In
opposition, the average BAC performances rise again to a new peak
at batch size 80, providing a even better average performance as
well as a more compact behaviour than with 40. This is expected
since the amount of data samples is almost twice in the MvsAll
experiment than in the MvsN.

Thus, the selected batch size for the MvsN and MvsAll experi-
ments are 40 and 80, respectively.

The coefficient order and the image size for each experiment
can also be determined following the same approach. Table 2 de-
picts the average BAC results for the image size parameter in each
data dimension when using either the first- or second-order coef-
ficients. BAC values are the averaged results obtained by the dif-
ferent batch sizes. Note, however, that because batch sizes 5, 10,
and 15 performed so poorly, they were excluded from the results
present in the following tables so to preserve statistical signifi-
cance. This means each (non-italicized) value is an average of four
executions of different batch sizes (including CV).

As can be seen in Table 2, the best average BAC performance
in each coefficient order (marked in boldface) is achieved by the
intermediate image size of 64 x 64, with 81.25% and 68.30% BAC
performance in the first-order, for RGB and depth respectively, and
82.89% and 67.01% in the second order results. The higher per-
formance in the intermediate image size is expected because us-
ing the smaller 32 x 32 image size removes too much informa-
tion due to the down-sampling. However, using a larger 128 x 128
image size slightly decreases the classification performance as the
model quickly overfits on more detailed features provided by the
WS framework during the training on this small dataset.

Table 2 also allows one to analyse the average performance, for
all images sizes and batch sizes, (marked in italics) for the two dif-
ferent coefficient orders. The best average result is obtained for the
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Table 3

Average BAC for each image resize and for 1st and 2nd
order coefficients over the possible data components -
MvsAll experiment.

Image Data Components

Order Size

RGB z

1st 32 x32 68.60+1.85 56.99+4.77
64 x 64 71.73+7.73 60.71+4.15
128 x 128  68.45+5.57  62.05+3.45
average 69.59 59.92

2nd 32x32 66.67+5.37  62.50+3.04
64 x 64 74.55+2.47 62.35+3.26
128 x 128 73.96+7.72 60.71+4.44
average 71.73 61.86

first-order coefficients with 79.55% and 66.09%, for RGB and depth
respectively, against 78.24% and 61.72% BAC when using second-
order coefficients.

The results shown in Table 3 for the MvsAll experiment were
obtained under the same test conditions. In this case, the best av-
erage BAC is not achieved for the same image size. Yet, the dif-
ferent results obtained for each image size allows to observe that
64 x 64 offers the best compromise in both coefficient orders. For
example, in the first-order coefficient results, selecting 128 x 128
instead of 64 x 64, causes an improvement of 1.3 percentage points
(pp - unit measure of the arithmetic difference between two per-
centages) in the Z average BAC, while for the RGB the performance
drops 3.28pp. Therefore, 64 x 64 is preferred, favouring the RGB
classification. This analysis also works for the second-order coeffi-
cients. If the 32 x 32 image size is selected instead of the 64 x 64,
the average BAC for Z improved by 0.15pp, while for RGB it drops
7.88pp. Therefore, 64 x 64 is preferred, also favouring of the RGB
classification.

Similarly to the image size, the best coefficient order for the
MvsAll experiment is not an obvious choice. Resorting to the same
rationale as in MvsN, in Table 3 the best average BAC across im-
age and batch size (marked in italics) is obtained by the second-
order coefficients with 71.73% and 61.86%, for RGB and Z respec-
tively, against 69.59% and 59.92% for the first-order coefficients.
This can be partially explained due to the added variability in the
dataset comprising the MvsAll experiment. In this case, there are
seven different skin lesion types, instead of only two, creating a
broader view of the classification problem and, consequently, re-
quiring more detailed features, as present in second-order coeffi-
cients. The difficulty in selecting the best parameters in the case
of the MvsAll experiment is probably due to the fact that in this
experiment classes are even more imbalanced than in MvsN.

From these comparisons, it is safe to conclude that a good
compromise in terms of the average BAC metric performance is
achieved when configuring the image size as 64 x 64, using first-
order coefficients for the MvsN experiment and second-order coef-
ficients for the MvsAll experiment.

4.3. Ablation study of the segmentation

In this section an ablation study about the influence of the use
of a segmentation method in the pipeline is performed. Having
previously determined the best average parameters, this study ver-
ifies the impact of not using the lesions segmentation masks in the
overall classification results. By not using a segmentation mask to
detect the ROI, it becomes impossible to hide skin pixels and re-
size the ROI information to the target experiment size. Therefore,
in this ablation study, the removal of the segmentation information
from the pipeline forces the skin pixels to stay in the image, which
is later used in the remaining process. This means that when re-
sized to the target image size, the full image is used instead of only
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Table 4
BAC results for the ablation study of the use of the segmentation masks paired with
the optimal selected parameters.

Image Batch Data Segmentation
Dataset  Size Order Size Components —————
With Without
MvsN 64x64 1 40 RGB 8234 5754
z 66.67 60.91
RGBZ 93.65 73.02
MvsAll  64x64 2 80 RGB 7143 5357
z 55.95 50.00
RGBZ 85.12 61.90

the ROL Table 4 provides the results for pipeline execution, with
and without the segmentation mask. From the attained results, it
is clear that using the segmentation mask to clear out healthy skin
and make the algorithm focus on the lesion area provides superior
results. On average, not using the segmentation mask decreases the
BAC performance by 17.06pp and 15.67pp for the MvsN and MvsAll
experiments, respectively.

4.4. Comparison results with baseline method

Using the parameters defined in the previous section, that is:
image size of 64 x 64; first-order coefficients and batch size 40
for the MvsN experiment; and second-order coefficients and batch
size 80 for MvsAll - the proposed model achieves the results
depicted in Table 5. Results are shown both at a Dataset Level
and by performing Cross-Validation Average. These results were ob-
tained using RGB and Z (depth) components individually - Pro-
posed (RGB) and Proposed (Z) respectively — and with all com-
ponents - Proposed (RGBZ). The results are also compared to the
state-of-the-art method in Hosny et al. (2019) - named Baseline
(RGB) - providing classification results for both experiments (MvsN
and MuvsAll). This classification method was selected as baseline
since it performs comparisons with three well-known 2D datasets
and outperforms other 11 state-of-the-art algorithms. Averaging
across the three datasets mentioned in its’ work, this method re-
ports a 96.8% accuracy performance when using data augmenta-
tion and 88.9% when not using it. At the time of writing, to the
authors knowledge, there are no other works published by other
authors resorting to the SKINL2 dataset, which could be used for
comparison.

The Baseline (RGB) method was strictly implemented as ex-
pressed in Hosny et al. (2019). This means that the pre-trained
Alexnet model was used for Transfer Learning after replacing the
last three classification layers with new random weights and ap-
plying a binary classification softmax layer. Prior to training, all
images undergo the lesion segmentation methodology reported by
Hosny et al. (2019), which features the manual optimisation of
three parameters in each image to find the optimal segmentation
mask. The dataset is also augmented by 72 times by performing

Table 5
Proposed Method Results.
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72 random rotations (in the range [0,355]) to every image. If an
image does not fit the Alexnet model input size, a resizing oper-
ation is performed. During the training, back-propagation is used
and the Stochastic Gradient Descent algorithm is used to update
the weights with a learning rate of 0.001. Additionally, the batch
size and number of training epoch are fixed to 10 and 32, respec-
tively. Results are obtained via 10-fold CV.

Using the dataset employed in this work (SKINL2), the baseline
method provides a 68.00% and 73.47% accuracy performance with
53.77% and 48.81% BAC for the MvsN and MvsAll experiments, re-
spectively. While the accuracy increases in the MvsAll experiment
(which has 48 additional samples in comparison with MvsN), it is
important to point-out that the SEN metric decreases by 7.14pp
even though the number of melanoma samples is the same (14)
in both experiments. This decrease represents the misclassification
of one additional melanoma, identifying only 2 out 14 in the MvsN
experiment and 3 in the other. The SPE metric is not comparable
since the amount of samples differs between experiments. Across
the 10-fold CV, the baseline method correctly identifies 31 out of
36 nevus in the first experiment, and 70 out of 84 non-melanoma
lesions in the second experiment.

As can be seen in Table 5 for the MvsN experiment, the
proposed approach (Proposed (RGBZ)) achieves 94.00% accuracy
and 93.65% BAC, an increase of 26.00pp and 39.88pp, respec-
tively, when compared to the Baseline (RGB) method. This im-
provement comprises the utilisation of both RGB and depth com-
ponents. If only the RGB data dimension is used, the proposed
pipeline achieves only 84.00% accuracy and 82.34% BAC, 10.00pp
and 11.31pp lower than the results achieved when using both com-
ponents, respectively. Also, the use of only the depth component
does not perform as well as using RGB component, however its
performance is still superior to the baseline method in all metrics
except SPE.

As expected, the combined use of both RGB and depth compo-
nents surpasses the individual usage of only one of them, allowing
one to infer that the depth component owns discriminative power
not present in RGB. For instance, exploring the label predictions
performed by the separate RGB and Z models, it is clear that two
melanoma samples, which are correctly classified using depth, are
not correctly classified when using RGB only. Getting the two com-
ponents together in the new model (RGBZ) also allows the pre-
diction of the other two melanoma samples, which were wrongly
classified using only RGB components, thus supporting the thesis
that the skin lesion surface has potential to improve the discrimi-
nation between melanoma and nevus.

For the experiment MvsAll, the results achieved by the pro-
posed pipeline are also shown in Table 5, where Proposed (RGBZ)
attains 89.80% accuracy and 85.12% BAC, an increase of 16.33pp
and 36.31pp respectively, when compared to the Baseline (RGB)
method. Like in the MvsN experiment, this increase corresponds to
the use of both RGB and depth components. When using the RGB
component alone, the proposed approach achieves only 86.73% and

Dataset Level Cross-Validation Average

Dataset Method
ACC SEN SPE BAC ACC

SEN SPE BAC

MvsN Baseline (RGB) 68.00 2143  86.11 53.77  65.17
Proposed (RGB) 84.00 7857  86.11 8234  84.67
Proposed (Z) 74.00 50.00 83.33 66.67 73.50
Proposed (RGBZ) 94.00 92.86 9444 93.65 95.00
MvsAll  Baseline (RGB) 73.47 1429 8333 4881 73.33
Proposed (RGB) 86.73 50.00 9286 7143  86.97
Proposed (Z) 85.71 1429 97.62 5595 86.26
Proposed (RGBZ) 89.80 78.57 91.67 85.12 90.10

+27.68 1500 £25.00 8333  £33.79 49.17  £24.81
+13.86 8500 +2500 8583  +1528 8542 +14.94
+17.72  45.00 +41.67 8333  +18.99 64.17 £23.21
+11.79  95.00 +16.67 95.00 +11.02 95.00 +12.67
+9.05 15.00 £3536 83.06 +£13.54 49.03 +16.17
+6.71 55.00 +4330 92.78  +8.89 73.89  £19.27
+8.56 15.00 +16.67 97.78 +7.41 56.39  £9.53

+8.97 75.00 +44.10 9194 +10.89 8347 £21.31

Baseline: as in Hosny et al. (2019)
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Table 6
EffecientNet Results.

EfficientNet MvsN MvsAll

Batch size version

ACC SEN SPE BAC ACC SEN SPE BAC

20 BO 66.00 50.00 7222 61.11 79.59 4286 85.71 64.29
B1 76.00 78.57 75.00 76.79 81.63 4286 88.10 65.48
B2 78.00 7143 80.56  75.99 7755 57.14 80.95 69.05
B3 68.00 4286 77.78  60.32 77,55 57.14 8095 69.05
B4 76.00 57.14 8333 70.24 76.53 4286 82.14  62.50
B5 78.00 7143 80.56  75.99 7653 57.14 79.76  68.45
B6 70.00 6429 7222 68.25 7857 57.14 82.14 69.64

40 BO 78.00 50.00 88.89 69.44 82.65 57.14 86.90 72.02
B1 7400 6429 77.78 71.03 84.69 50.00 9048 70.24
B2 80.00 7143 8333 77.38 79.59 4286  85.71 64.29
B3 74.00 4286  84.11 64.48 82.65 4286 89.29 66.07
B4 78.00 57.14  86.11 71.63 82.65 57.14 86.90  72.02

60 BO 72.00 6429 75.00 69.64 82.65 4286 89.29  66.07
B1 76.00 7143 77.78  74.60 84.69 57.14 8929 73.21
B2 78.00 7143 80.56  75.99 84.69 57.14 8929 73.21
B3 7400 57.14 80.56  68.85 81.63 28,57 9048 59.52

80 BO 68.00 57.14 7222 64.68 7755 4286 8333  63.10
B1 72.00 7143 7222 71.83 82.65 57.14 86.90  72.02
B2 80.00 6429 86.11 75.25 83.67 57.14 88.10 72.62

71.43%, that is 3.07pp and 13.69pp lower than the Proposed (RGBZ)
results, although still superior to the Baseline (RGB) method.

If the method uses only the depth component, similarly to the
case of MvsN, the results are also lower than the Proposed (RGBZ)
results, yet still superior to the Baseline (RGB) results for all met-
rics. In this MvsAll experiment, however, the data imbalance is
greater than in MvsN. Incorrect melanoma classifications almost
go unnoticed by the accuracy metric since, for instance, a classi-
fication of all data as non-melanoma image samples immediately
achieves 85.71% accuracy. Nevertheless, this would be noticeable
because the BAC metric would only achieve 50.00%. This means
that, although the proposed RGBZ method achieves a similar accu-
racy performance, the total number of melanoma-misclassification
is lower, because the BAC performance is 85.12%, accounting for
78.57% SEN in this case. This corresponds to the correct classifica-
tion of 11 out of 14 melanoma samples, nine more than the Base-
line (RGB).

In this section, all comparisons with the baseline classification
method have shown that the proposed approach provides superior
performance results. Accordingly, this can be seen as an indirect
benchmark comparison of the proposed method with the works
compared in Hosny et al. (2019) and other works that resorted
to the same dataset and metrics. In essence, since the baseline
method reports results superior to 10 other works, it is expected
that the proposed approach could also show results superior to
the mentioned works, if they were to be applied to the SKINL2
dataset. This hypothesis may be further extended to other works
like Pereira et al. (2020); Tang et al. (2020); Barata et al. (2018);
Pathan et al. (2018); Hagerty et al. (2019), that use the same
datasets and metrics as the baseline method.

In addition to the discussed results, it is worthwhile to men-
tion some studies that compare the results of computational
models with human classification of skin lesions performed by
specialists, i.e. dermatologists. This is the case, for instance of
Esteva et al. (2017); Marchetti et al. (2018); Haenssle et al. (2018);
Brinker et al. (2019), where the SEN and SPE are evaluated and
compared. In Brinker et al. (2019), these comparisons were carried
out in regard to the task of performing melanoma versus nevus
classification, involving 157 dermatologists that span across 12 Ger-
man university hospitals. The test dataset used in this experiment
comprises 20 melanomas and 80 nevi randomly selected from the
ISIC dataset. Indirectly, this enables the comparison of the pro-
posed approach with the results obtained from the 157 dermatol-

1

ogists. A mean of 74.1% for SEN and 60% for SPE was achieved by
the dermatologists with dermoscopic images. This is inferior to the
performance reported in Table 5 for the proposed RGBZ approach,
which provides an additional 18.76pp in SEN and 34.44pp in SPE.
Furthermore, in Marchetti et al. (2018) and Haenssle et al. (2018),
respectively, 8 and 58 dermatologists have also participated in a
similar study on another set of 100 images, obtaining 82% and
86.6% for SEN, and 59% and 71.3% for SPE. Again, on average,
the proposed approach outperforms these classification results ob-
tained by specialists.

Although the results obtained in Table 5 cannot be directly
compared with the studies cited above, they establish a valuable
reference for the expected classification performance made by spe-
cialists in the same MvsN dataset. Therefore, it is possible to infer
that, on average, the proposed Morlet Scattering approach would
outperform the human-based classification.

4.5. Comparison results with other sota methods

In addition to comparisons made in the previous section, it is
also relevant to compare the proposed RGB classification pipeline
with other state-of-the-art methods. As such, the EfficientNets
family was selected (Tan and Le, 2019).

Following the same constraints used to attain the previous
models, EfficientNet-B0O to -B7 were trained (using Transfer Learn-
ing) under the exact same conditions as performed for the other
experiments. This includes the 72 random rotations for the data
augmentation, the image resize, the use of back-propagation and
Gradient Descent algorithms, the 0.001 learning rate, and the same
amount of training epochs. All of which were repeated on a 10-
fold CV execution scheme. However, given the growth rate of the
amount of trainable parameters from one version of the network
to the next many combinations of batch size and EfficientNet ver-
sions were not feasible, due to hardware limitations, namely GPU
memory space (12GB).

Results depicting the EfficientNets family executions are pre-
sented in Table 6. EfficientNets have more trainable parameters
than our proposed model, which causes them to quickly overfit in
the small training dataset. Most EfficientNet executions achieved
+95% training accuracy by the third epoch. In terms of test accu-
racy, EfficientNets topped at 80.00% and 84.69% for the MvsN and
MvsAll experiments, respectively.
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From the table, the best accuracy EffcientNet results were
achieved with batch sizes of 40 and 80 with EfficientNet-B2 in
the MvsN experiment. In the MvsAll experiment, the best accuracy
results correspond to the configurations using batch sizes 40 and
60 with EfficientNet-B1 and batch size 60 with EfficientNet-B2. In
comparison, the results obtained with the Proposed (RGB) method,
in Table 5, achieve 84.00% and 86.73%, respectively for each exper-
iment.

Using the BAC metric, which takes into account both the sensi-
tivity and specificity, in particular to the MvsN experiment, none of
the EfficientNet executions outperformed the Proposed (RGB), must
less the Proposed (RGBZ) - also in Table 5. Using this metric, the
best EfficientNet execution (batch size 40 and EfficientNet-B2) is
4.96pp lower than the Proposed (RGB), and 16.27pp lower than the
Proposed (RGBZ).

In particular to the MvsAll experiment, it is possible to see that
six of the executions outperform the Proposed (RGB) by correctly
classifying one extra melanoma to the detriment of some non-
melanoma lesion images. In any of these cases, the BAC results in-
crease was limited to a maximum of 1.78pp, when checked against
to the Proposed (RGB) - 71.43%. In comparison, the use of depth
information (RGBZ) adds 11.91pp on top of that. Meaning that the
proposed pipeline always outperforms the EfficientNet models if
supplied with depth information.

5. Conclusions and future work

Automated melanoma discrimination is crucial to aid dermatol-
ogists improving their diagnostic accuracy. The pursuit for a solu-
tion to automatically identify melanoma has been under study for
decades. Still, discrimination of melanoma, even with Deep Learn-
ing methods, remains a challenging problem and current systems
are yet to achieve satisfactory sensitivity performances. Rather
than continuously attempting to improve algorithms by using the
same data as commonly used by dermatology experts, other di-
mensions and modalities, as the skin lesion 3D surface, should be
explored. In order to go beyond current state-of-the-art results,
more reliable solutions might include merging 2D data together
with other dimensional aspects, such as surface, which has poten-
tial to provide extended melanoma discrimination capabilities.

Taking advantage of the recently introduced technology of the
light-field cameras, apart from the proposed pipeline, the main
contribution of this paper is the evaluation of the skins’ 3D surface
data as an alternative data modality when performing melanoma
classification, as well as its comparison to current state-of-the-
art results. This is done resorting to a recent dataset of multi-
dimensional imaging, which was specifically acquired for this goal.
Because the data originates from light-field imagery, every image-
pixel data comprises both dimensions, enabling the creation of a
proposed pipeline which operates in a same comparable setting.

Despite the large class imbalance (often present in medical
image datasets) and limited data samples, the attained classifi-
cation results appear to surpass the sensitivity and specificity to
discriminate melanomas from nevi, not only of the state-of-the-
art algorithms, but also of human specialists. In the proposed ap-
proach pipeline (RGBZ), the melanoma discrimination against ne-
vus was achieved with 94.00% accuracy (comprising 92.86% sensi-
tivity and 94.44% specificity) when combining 2D data with depth,
a 26.00pp accuracy increase in relation to the state-of-the-art
baseline method.

In a similar setting, for the discrimination of melanomas against
all other available skin lesions, the proposed approach achieved
89.80% accuracy (comprising 78.57% sensitivity and 91.67% speci-
ficity), an increase of 16.33pp in relation to the state-of-the-art
baseline method.
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The experimental assessment allows to conclude that image
classification problems, including melanoma skin lesion classifica-
tion, can be further improved by including 3D information, such as
surface depth data.
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